k-Core Organization in Complex Networks

  • G. J. Baxter
  • S. N. Dorogovtsev
  • A. V. Goltsev
  • J. F. F. Mendes
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 57)

Abstract

We analyse the complex network architectures based on the k-core notion, where the k-core is the maximal subgraph in a network, whose vertices all have internal degree at least k. We explain the nature of the unusual “hybrid” phase transition of the emergence of a giant k-core in a network, which combines a jump in the order parameter and a critical singularity, and relate this transition to critical phenomena in other systems. Finally, we indicate generic features and differences between the k-core problem and bootstrap percolation.

References

  1. 1.
    Albert, R., Barabási, A. L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).MATHCrossRefGoogle Scholar
  2. 2.
    Dorogovtsev, S.N., Mendes, J. F. F.: Evolution of networks. Adv. Phys. 51, 1079–1187 (2002).Google Scholar
  3. 3.
    Dorogovtsev, S.N., Mendes, J. F. F.: Evolution of networks. (Oxford University Press, Oxford, 2003).Google Scholar
  4. 4.
    Dorogovtsev, S. N., Goltsev, A. V., Mendes, J. F. F.: Critical phenomena in complex networks. Rev. Mod. Phys. 80, 1275–1335 (2008).CrossRefGoogle Scholar
  5. 5.
    Chalupa, J., Leath, P. L., Reich, G. R.: Bootstrap percolation on a Bethe lattice. J. Phys. C 12, L31–L35 (1979).CrossRefGoogle Scholar
  6. 6.
    B. Bollobás, in Graph Theory and Combinatorics: Proc. Cambridge Combinatorial Conf. in honour of Paul Erdős (B. Bollobás, ed.) (Academic Press, NY, 1984), p. 35.Google Scholar
  7. 7.
    Pazó D.: Thermodynamic limit of the first-order phase transition in the Kuramoto model. Phys. Rev. E 72, 046211 (2005).MathSciNetCrossRefGoogle Scholar
  8. 8.
    Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: A model of Internet topology using k-shell decomposition. PNAS 104, 11150–11154 (2007).CrossRefGoogle Scholar
  9. 9.
    Alvarez-Hamelin, J. I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the k-core decomposition. In: Y. Weiss, B. Schölkopf, and J. Platt (eds.) Advances in Neural Information Processing Systems 18, pp. 41–50, MIT Press, Cambridge (2006).Google Scholar
  10. 10.
    Alvarez-Hamelin, J. I., Dall’Asta, L., Barrat, A., Vespignani, A.: k-core decomposition of Internet graphs: Hierarchies, selfsimilarity and measurement biases. Networks and Heterogeneous Media 3, 371 (2008).Google Scholar
  11. 11.
    Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: k-core organisation of complex networks. Phys. Rev. Lett. 96, 040601 (2006).CrossRefGoogle Scholar
  12. 12.
    Goltsev, A. V., Dorogovtsev, S. N., Mendes, J. F. F.: k-core (bootstrap) percolation on complex networks: Critical phenomena and nonlocal effects. Phys. Rev. E 73, 056101 (2006).MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dorogovtsev, S. N., Goltsev, A. V., Mendes, J. F. F.: k-core architecture and k-core percolation on complex networks. Physica D 224, 7–19 (2006).MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Moukarzel, C. F.: Rigidity percolation in a field. Phys. Rev. E 68, 056104 (2003).CrossRefGoogle Scholar
  15. 15.
    Schwarz, J. M., Liu, A. J., Chayes, L. Q.: The onset of jamming as the sudden emergence of an infinite k-core cluster. Europhys. Lett. 73, 560–566 (2006).CrossRefGoogle Scholar
  16. 16.
    Chatterjee, N., Sinha, S.: Understanding the mind of a worm: hierarchical network structure underlying nervous system function in C. elegans. Prog. Brain Res. 168, 145–153 (2007).Google Scholar
  17. 17.
    Schwab, D. J., Bruinsma, R. F., Feldman, J. L., Levine, A. J.: Rhythmogenic neuronal networks, emergent leaders, and k-cores. Phys. Rev. E 82, 051911 (2010).CrossRefGoogle Scholar
  18. 18.
    Klimek, P., Thurner, S., Hanel, R.: Pruning the tree of life: k-Core percolation as selection mechanism. J. Theoret. Biol. 256, 142–146 (2009).CrossRefGoogle Scholar
  19. 19.
    Pittel, B., Spencer, J., Wormald, N.: Sudden emergence of a giant k-core in a random graph. J. Comb. Theory B 67, 111–151 (1996).MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Fernholz, D., Ramachandran, V.: The giant k-core of a random graph with a specified degree sequence. Tech. Rep. TR04-13, University of Texas Computer Science (2004).Google Scholar
  21. 21.
    Riordan, O.: The k-core and branching processes. Combin. Probab. Comput. 17, 111–136 (2008).MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Corominas-Murtra, B., Mendes, J. F. F., Solé, R. V.: Nested subgraphs of complex networks. J. Phys. A 41, 385003 (2008).MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kogut, P. M., Leath, P. L.: Bootstrap percolation transitions on real lattices. J. Phys. C 14, 3187–3194 (1981).CrossRefGoogle Scholar
  24. 24.
    Serrano, M. A, Boguna, M.: Percolation and epidemic thresholds in clustered networks. Phys. Rev. Lett. 97, 088701 (2006).CrossRefGoogle Scholar
  25. 25.
    Serrano, M. A, Boguna, M.: Clustering in complex networks. II. Percolation properties. Phys. Rev. E 74, 056115 (2006).MathSciNetGoogle Scholar
  26. 26.
    Parisi, G., Rizzo, T.: k-core percolation in four dimensions. Phys. Rev. E 78, 022101 (2008).CrossRefGoogle Scholar
  27. 27.
    Gleeson, J. P., Melnik, S.: Analytical results for bond percolation and k-core sizes on clustered networks. Phys. Rev. E 80, 046121 (2009).CrossRefGoogle Scholar
  28. 28.
    Gleeson, J. P., Melnik, S., Hackett, A.: How clustering affects the bond percolation threshold in complex networks. Phys. Rev. E 81, 066114 (2010).MathSciNetCrossRefGoogle Scholar
  29. 29.
    Newman, M. E. J., Strogatz, S. H., and Watts, D. J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001).CrossRefGoogle Scholar
  30. 30.
    Melnik, S., Hackett, A., Porter, M. A., Mucha, P. J., Gleeson, J.P.: The unreasonable effectiveness of tree-based theory for networks with clustering. arXiv:1001.1439.Google Scholar
  31. 31.
    Aizenman, M., Lebowitz, J. L.: Metastability effects in bootstrap percolation. J. Phys. A 21, 3801–3813 (1988).MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Baxter, G.J., Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Bootstrap percolation on complex networks. Phys. Rev. E 82, 011103 (2010).CrossRefGoogle Scholar
  33. 33.
    Cohen, R., ben Avraham, D., Havlin, S.: Percolation critical exponents in scale-free networks. Phys. Rev. E 66, 036113 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • G. J. Baxter
    • 1
  • S. N. Dorogovtsev
    • 2
  • A. V. Goltsev
    • 2
  • J. F. F. Mendes
    • 1
  1. 1.Departamento de Física, I3NUniversidade de AveiroAveiroPortugal
  2. 2.A. F. Ioffe Physico-Technical InstituteSt. PetersburgRussia

Personalised recommendations