Skip to main content

Fitness-Based Generative Models for Power-Law Networks

  • Chapter
  • First Online:
Handbook of Optimization in Complex Networks

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 57))

Abstract

Many real-world complex networks exhibit a power-law degree distribution. A dominant concept traditionally believed to underlie the emergence of this phenomenon is the mechanism of preferential attachment which originally states that in a growing network a node with higher degree is more likely to be connected by joining nodes. However, a line of research towards a naturally comprehensible explanation for the formation of power-law networks has argued that degree is not the only key factor influencing the network growth. Instead, it is conjectured that each node has a “fitness” representing its propensity to attract links. The concept of fitness is more general than degree; the former may be some factor that is not degree, or may be degree in combination with other factors. This chapter presents a discussion of existing models for generating power-law networks, that belong to this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert, R., Jeong, H., Barabási, A.L.: Diameter of the world-wide-web. Nature 400, 107–110 (1999)

    Google Scholar 

  2. Barabási, A.: The physics of the web. Physics World 14-7, 33–38 (2001)

    Google Scholar 

  3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  4. Bedogne, C., Rodgers, G.J.: Complex growing networks with intrinsic vertex fitness. Phys. Rev. E 74, 046,115 (2006)

    Google Scholar 

  5. Bianconi, G., Barabsi, A.L.: Competition and multiscaling in evolving networks. Europhysics Letters 54, 436–442 (2001). DOI 10.1209/epl/i2001-00260-6. URL http://dx.doi.org/10.1209/epl/i2001-00260-6

    Google Scholar 

  6. Caldarelli, G., Capocci, A., Rios, P.D.L., Munoz, M.: Scale-free networks from varying vertex intrinsic fitness. Phys. Rev. Lett. 89-25, 258,702 (2002)

    Google Scholar 

  7. Callaway, D.S., Hopcroft, J.E., Kleinberg, J.M., Newman, M.E.J., Strogatz, S.H.: Are randomly grown graphs really random? Physical Review E 64, 041,902 (2001). URL http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/0104546

    Google Scholar 

  8. Dangalchev, C.: Generation models for scale-free networks. Physica A: Statistical Mechanics and its Applications 338, 659–671 (2004)

    Article  MathSciNet  Google Scholar 

  9. Erdós, P., Rényi, A.: On random graphs. Publicationes Mathematicae 6, 290–297 (1959)

    Google Scholar 

  10. Erdós, P., Rényi, A.: On the evolution of random graphs. Publ. of Math. Inst. of the Hungarian Acad. of Sci. 5, 17–61 (1960)

    Google Scholar 

  11. Erdós, P., Rényi, A.: On the strength of connectedness of a random graph. Acta Mathematia Scientia Hungary 12, 261–267 (1961)

    Article  Google Scholar 

  12. Faloutros, M., P. Faloutros, Faloutros, C.: On power-law relationship of the internet topology. ACM SIGCOM 99, Comp. Comm. Rev. 29, 251–260 (1999)

    Google Scholar 

  13. Ghadge, S., Killingback, T., Sundaram, B., Tran, D.A.: A statistical construction of power-law networks. International Journal on Parallel, Emergent, and Distributed Systems 25, 223–235 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jeong, H., Mason, S., Oltvai, R., Barabási, A.: Lethality and centrality in protein networks. Nature 411, 41 (2001)

    Article  Google Scholar 

  15. Jeong, H., Tombor, B., Albert, R., Oltvai, N., Barabási, A.: The large-scale organization of metabolic networks. Nature 607, 651 (2000)

    Google Scholar 

  16. Kong, J.S., Sarshar, N., Roychowdhury, V.P.: Experience versus talent shapes the structure of the web. PNAS 105(37), 13724–13729 (2008)

    Article  Google Scholar 

  17. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the web graph. In: FOCS ’00: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, p. 57. IEEE Computer Society, Washington, DC, USA (2000)

    Google Scholar 

  18. Li, L., Alderson, D., Doyle, J., Willinger, W.: Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications. In Proceedings of Internet Mathematics (2005)

    Google Scholar 

  19. Liljeros, F., Edling, C.R., Amaral, L.A.N., Stanley, H.E., Aberg, Y.: The web of human sexual contacts. Nature 411, 907 (2001)

    Article  Google Scholar 

  20. Moore, C., Ghoshal, G., Newman, M.E.J.: Exact solutions for models of evolving networks with addition and deletion of nodes. Phys. Rev. E 74(3), 036,121 (2006). DOI 10.1103/PhysRevE.74.036121

    Google Scholar 

  21. Neuman, M.: The structure of scientific collaboration networks. Proc. Nat. Acad. Sci. USA 98, 404–409 (2001)

    Article  Google Scholar 

  22. Vito, D., Caldarelli, G., Butta, P.: Vertex intrinsic fitness: How to produce arbitrary scale-free networks. Phys. Rev. E 70, 056,126 (2004)

    Google Scholar 

  23. Watts, D., Strogatz, S.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank UMass Boston colleagues, Shilpa Ghadge, Bala Sundaram, and Timothy Killingback, for valuable discussions regarding the lognormal fitness model presented in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc A. Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nguyen, K., Tran, D.A. (2012). Fitness-Based Generative Models for Power-Law Networks. In: Thai, M., Pardalos, P. (eds) Handbook of Optimization in Complex Networks. Springer Optimization and Its Applications(), vol 57. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0754-6_2

Download citation

Publish with us

Policies and ethics