Skip to main content

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 10))

Abstract

This chapter considers addiction from a purely theoretical point of view. It tries to substantiate the idea that addictive behaviour is a natural consequence of abnormal perceptual learning. In short, addictive behaviours emerge when behaviour confounds its own acquisition. Specifically, we consider what would happen if behaviour interfered with the neurotransmitter systems responsible for optimising the conditional certainty or precision of inferences about causal structure in the world. We will pursue this within a rather abstract framework provided by free-energy formulations of action and perception. Although this treatment does not touch upon many of the neurobiological or psychosocial issues in addiction research, it provides a principled framework within which to understand exchanges with the environment and how they can be disturbed. Our focus will be on behaviour as active inference and the key role of prior expectations. These priors play the role of policies in reinforcement learning and place crucial constraints on perceptual inference and subsequent action. A dynamical treatment of these policies suggests a fundamental distinction between fixed-point policies that lead to a single attractive state and itinerant policies that support wandering behavioural orbits among sets of attractive states. Itinerant policies may provide a useful metaphor for many forms of behaviour and, in particular, addiction. Under these sorts of policies, neuromodulatory (e.g., dopaminergic) perturbations can lead to false inference and consequent learning, which produce addictive and preservative behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles M, Hayon G, Lehmann D (2004) Modeling compositionality by dynamic binding of synfire chains. J Comput Neurosci 17(2):179–201

    Article  PubMed  Google Scholar 

  • Ahmed SH, Graupner M, Gutkin B (2009) Computational approaches to the neurobiology of drug addiction. Pharmacopsychiatry 42(1):S144–S152 Suppl

    Article  PubMed  CAS  Google Scholar 

  • Alcaro A, Huber R, Panksepp J (2007) Behavioral functions of the mesolimbic dopaminergic system: an affective neuroethological perspective. Brains Res Rev 56(2):283–321

    Article  CAS  Google Scholar 

  • Ballard DH, Hinton GE, Sejnowski TJ (1983) Parallel visual computation. Nature 306:21–26

    Article  PubMed  CAS  Google Scholar 

  • Bellman R (1952) On the theory of dynamic programming. Proc Natl Acad Sci USA 38:716–719

    Article  PubMed  CAS  Google Scholar 

  • Berke JD, Hyman SE (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25(3):515–532

    Article  PubMed  CAS  Google Scholar 

  • Birkhoff GD (1931) Proof of the ergodic theorem. Proc Natl Acad Sci USA 17:656–660

    Article  PubMed  CAS  Google Scholar 

  • Breakspear M, Stam CJ (2005) Dynamics of a neural system with a multiscale architecture. Philos Trans R Soc Lond B, Biol Sci 360(1457):1051–1074

    Article  Google Scholar 

  • Bressler SL, Tognoli E (2006) Operational principles of neurocognitive networks. Int J Psychophysiol 60(2):139–148

    Article  PubMed  Google Scholar 

  • Bromberg-Martin ES, Hikosaka O (2009) Midbrain dopamine neurons signal preference for advance information about upcoming rewards. Neuron 63:119–126

    Article  PubMed  CAS  Google Scholar 

  • Coricelli G, Dolan RJ, Sirigu A (2007) Brain, emotion and decision making: the paradigmatic example of regret. Trends Cogn Sci 11(6):258–265

    Article  PubMed  Google Scholar 

  • Camerer CF (2003) Behavioural studies of strategic thinking in games. Trends Cogn Sci 7(5):225–231

    Article  PubMed  Google Scholar 

  • Chen X, Zelinsky GJ (2006) Real-world visual search is dominated by top-down guidance. Vis Res 46(24):4118–4133

    Article  PubMed  Google Scholar 

  • Colliaux D, Molter C, Yamaguchi Y (2009) Working memory dynamics and spontaneous activity in a flip-flop oscillations network model with a Milnor attractor. Cogn Neurodyn 3(2):141–151

    Article  PubMed  Google Scholar 

  • Crauel H (1999) Global random attractors are uniquely determined by attracting deterministic compact sets. Ann Mat Pura Appl 176(4):57–72

    Article  Google Scholar 

  • Crauel H, Flandoli F (1994) Attractors for random dynamical systems. Probab Theory Relat Fields 100:365–393

    Article  Google Scholar 

  • Davidson TL (1993) The nature and function of interoceptive signals to feed: toward integration of physiological and learning perspectives. Psychol Rev 100(4):640–657

    Article  PubMed  CAS  Google Scholar 

  • Daw ND, Doya K (2006) The computational neurobiology of learning and reward. Curr Opin Neurobiol 16(2):199–204

    Article  PubMed  CAS  Google Scholar 

  • Daw ND, O’Doherty JP, Dayan P, Seymour B, Dolan RJ (2006) Cortical substrates for exploratory decisions in humans. Nature 441(7095):876–879

    Article  PubMed  CAS  Google Scholar 

  • Dayan P, Daw ND (2008) Decision theory, reinforcement learning, and the brain. Cogn Affect Behav Neurosci 8(4):429–453

    Article  PubMed  Google Scholar 

  • Dayan P, Hinton GE, Neal RM (1995) The Helmholtz machine. Neural Comput 7:889–904

    Article  PubMed  CAS  Google Scholar 

  • Dommett E, Coizet V, Blaha CD, Martindale J, Lefebvre V, Walton N, Mayhew JE, Overton PG, Redgrave P (2005) How visual stimuli activate dopaminergic neurons at short latency. Science 307:1476–1479

    Article  PubMed  CAS  Google Scholar 

  • Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman, San Francisco, pp 82–115

    Google Scholar 

  • Evans DJ (2003) A non-equilibrium free energy theorem for deterministic systems. Mol Phys 101:15551–15554

    Article  CAS  Google Scholar 

  • Feynman RP (1972) Statistical mechanics. Benjamin, Reading

    Google Scholar 

  • Freeman WJ (1994) Characterization of state transitions in spatially distributed, chaotic, nonlinear, dynamical systems in cerebral cortex. Integr Physiol Behav Sci 29(3):294–306

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Tononi G, Reeke GN Jr, Sporns O, Edelman GM (1994) Value-dependent selection in the brain: simulation in a synthetic neural model. Neuroscience 59(2):229–243

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ (2000) The labile brain. II. Transients, complexity and selection. Phil Trans Biol Sci 355(1394):237–252

    Article  CAS  Google Scholar 

  • Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond B, Biol Sci 360(1456):815–836

    Article  Google Scholar 

  • Friston K (2008) Hierarchical models in the brain. PLoS Comput Biol 4(11):e1000211

    Article  PubMed  CAS  Google Scholar 

  • Friston K, Kilner J, Harrison L (2006) A free energy principle for the brain. J Physiol Paris 100(1–3):70–87

    Article  PubMed  Google Scholar 

  • Friston KJ, Daunizeau J, Kiebel SJ (2009) Reinforcement learning or active inference? PLoS ONE 29;4(7):e6421

    Article  CAS  Google Scholar 

  • Friston KJ, Daunizeau J, Kilner J, Kiebel SJ (2010) Action and behavior: a free-energy formulation. Biol Cybern [Epub ahead of print]

    Google Scholar 

  • Fiorillo CD, Tobler PN, Schultz W (2003) Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299(5614):1898–1902

    Article  PubMed  CAS  Google Scholar 

  • Fiorillo CD (2008) Towards a general theory of neural computation based on prediction by single neurons. PLoS ONE 3:e3298

    Article  PubMed  Google Scholar 

  • Goto Y, Yang CR, Otani S (2010) Functional and dysfunctional synaptic plasticity in prefrontal cortex: roles in psychiatric disorders. Biol Psychiatry 67(3):199–207

    Article  PubMed  Google Scholar 

  • Gregory RL (1968) Perceptual illusions and brain models. Proc R Soc Lond B 171:179–196

    Article  Google Scholar 

  • Gregory RL (1980) Perceptions as hypotheses. Phil Trans R Soc Lond B 290:181–197

    Article  CAS  Google Scholar 

  • Gros C (2009) Cognitive computation with autonomously active neural networks: an emerging field. Cogn Comput 1:77–99

    Article  Google Scholar 

  • Haile PA, Hortaçsu A, Kosenok G (2008) On the empirical content of quantal response equilibrium. Am Econ Rev 98:180–200

    Article  Google Scholar 

  • Haken H (1983) Synergistics: an introduction. Non-equilibrium phase transition and self-organisation in physics, chemistry and biology, 3rd edn. Springer, Berlin

    Google Scholar 

  • Herrmann JM, Pawelzik K, Geisel T (1999) Self-localization of autonomous robots by hidden representations. Auton Robots 7:31–40

    Article  Google Scholar 

  • Hinton GE, van Camp D (1993) Keeping neural networks simple by minimising the description length of weights. In: Proceedings of COLT-93, pp 5–13

    Chapter  Google Scholar 

  • von Helmholtz H (1866) Concerning the perceptions in general. In: Treatise on physiological optics, vol III, 3rd edn (translated by J.P.C. Southall 1925 Opt Soc Am Section 26, reprinted New York, Dover, 1962)

    Google Scholar 

  • Henry DJ, White FJ (1995) The persistence of behavioral sensitization to cocaine parallels enhanced inhibition of nucleus accumbens neurons. J Neurosci 15(9):6287–6299

    PubMed  CAS  Google Scholar 

  • Hull C (1943) Principles of behavior. Appleton/Century-Crofts, New York

    Google Scholar 

  • Hsu M, Bhatt M, Adolphs R, Tranel D, Camerer CF (2005) Neural systems responding to degrees of uncertainty in human decision-making. Science 310(5754):1680–1683

    Article  PubMed  CAS  Google Scholar 

  • Jirsa VK, Friedrich R, Haken H, Kelso JA (1994) A theoretical model of phase transitions in the human brain. Biol Cybern 71(1):27–35

    Article  PubMed  CAS  Google Scholar 

  • Johnson A, van der Meer MA, Redish AD (2007) Integrating hippocampus and striatum in decision-making. Curr Opin Neurobiol 17(6):692–697

    Article  PubMed  CAS  Google Scholar 

  • Kelley AE, Berridge KC (2002) The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 22(9):3306–3311

    PubMed  CAS  Google Scholar 

  • Kersten D, Mamassian P, Yuille A (2004) Object perception as Bayesian inference. Annu Rev Psychol 55:271–304

    Article  PubMed  Google Scholar 

  • Khoshbouei H, Wang H, Lechleiter JD, Javitch JA, Galli A (2003) Amphetamine-induced dopamine efflux. A voltage-sensitive and intracellular Na+-dependent mechanism. J Biol Chem 278(14):12070–12077

    Article  PubMed  CAS  Google Scholar 

  • Knill DC, Pouget A (2004) The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci 27(12):712–719

    Article  PubMed  CAS  Google Scholar 

  • Lapish CC, Seamans JK, Chandler LJ (2006) Glutamate-dopamine cotransmission and reward processing in addiction. Alcohol Clin Exp Res 30:451–1465

    Article  CAS  Google Scholar 

  • Lee TS, Mumford D (2003) Hierarchical Bayesian inference in the visual cortex. J Opt Soc Am A, Opt Image Sci Vis 20:1434–1448

    Article  Google Scholar 

  • Lee HJ, Youn JM, MJ O, Gallagher M, Holland PC (2006) Role of substantia nigra-amygdala connections in surprise-induced enhancement of attention. J Neurosci 26(22):6077–6081

    Article  PubMed  CAS  Google Scholar 

  • Liss B, Roeper J (2008) Individual dopamine midbrain neurons: functional diversity and flexibility in health and disease. Brains Res Rev 58(2):314–321

    Article  CAS  Google Scholar 

  • Lodge DJ, Grace AA (2006) The hippocampus modulates dopamine neuron responsivity by regulating the intensity of phasic neuron activation. Neuropsychopharmacology 31:1356–1361

    Article  PubMed  CAS  Google Scholar 

  • MacKay DM (1956) The epistemological problem for automata. In: Shannon CE, McCarthy J (eds) Automata studies. Princeton University Press, Princeton, pp 235–251

    Google Scholar 

  • MacKay DJC (1995) Free-energy minimisation algorithm for decoding and cryptoanalysis. Electron Lett 31:445–447

    Article  Google Scholar 

  • Matheron G (1975) Random sets and integral geometry. Wiley, New York

    Google Scholar 

  • Matsumoto M, Hikosaka O (2009) Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459:837–841

    Article  PubMed  CAS  Google Scholar 

  • Maturana HR, Varela F (1980) De máquinas y seres vivos. Editorial Universitaria, Santiago. English version: Autopoiesis: the organization of the living, in Maturana, HR, and Varela, FG, Autopoiesis and Cognition. Dordrecht, Netherlands: Reidel

    Google Scholar 

  • Maynard Smith J (1992) Byte-sized evolution. Nature 355:772–773

    Article  Google Scholar 

  • McDonald RJ, Ko CH, Hong NS (2002) Attenuation of context-specific inhibition on reversal learning of a stimulus-response task in rats with neurotoxic hippocampal damage. Behav Brain Res 136(1):113–126

    Article  PubMed  Google Scholar 

  • McKelvey R, Palfrey T (1995) Quantal response equilibria for normal form games. Games Econ Behav 10:6–38

    Article  Google Scholar 

  • Montague PR, Dayan P, Person C, Sejnowski TJ (1995) Bee foraging in uncertain environments using predictive Hebbian learning. Nature 377(6551):725–728

    Article  PubMed  CAS  Google Scholar 

  • Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16:1936–1947

    PubMed  CAS  Google Scholar 

  • Moore CC (1966) Ergodicity of flows on homogeneous spaces. Am J Math 88:154–178

    Article  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60

    Article  PubMed  CAS  Google Scholar 

  • Mumford D (1992) On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biol Cybern 66:241–251

    Article  PubMed  CAS  Google Scholar 

  • Nara S (2003) Can potentially useful dynamics to solve complex problems emerge from constrained chaos and/or chaotic itinerancy? Chaos 13(3):1110–1121

    Article  PubMed  Google Scholar 

  • Neisser U (1967) Cognitive psychology. Appleton/Century-Crofts, New York

    Google Scholar 

  • Nestler EJ (2005) Is there a common molecular pathway for addiction? Nat Neurosci 8(11):1445–1449

    Article  PubMed  CAS  Google Scholar 

  • Niesink RJ, Van Ree JM (1989) Involvement of opioid and dopaminergic systems in isolation-induced pinning and social grooming of young rats. Neuropharmacology 28(4):411–418

    Article  PubMed  CAS  Google Scholar 

  • Niv Y, Schoenbaum G (2008) Dialogues on prediction errors. Trends Cogn Sci 12(7):265–272

    Article  PubMed  Google Scholar 

  • Nowak M, Sigmund K (1993) A strategy of win-stay, lose-shift that outperforms tit-for-tat in the prisoner’s Dilemma game. Nature 364:56–58

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34(1):171–175

    Article  PubMed  Google Scholar 

  • Panksepp J, Siviy S, Normansell L (1984) The psychobiology of play: theoretical and methodological perspectives. Neurosci Biobehav Rev 8(4):465–492

    Article  PubMed  CAS  Google Scholar 

  • Panksepp J, Knutson B, Burgdorf J (2002) The role of brain emotional systems in addictions: a neuro-evolutionary perspective and new ‘self-report’ animal model. Addiction 97(4):459–469

    Article  PubMed  Google Scholar 

  • Pasquale V, Massobrio P, Bologna LL, Chiappalone M, Martinoia S (2008) Self-organization and neuronal avalanches in networks of dissociated cortical neurons. Neuroscience 153(4):1354–1369

    Article  PubMed  CAS  Google Scholar 

  • Pierce RC, Kalivas PW (1997) A circuitry model of the expression of behavioural sensitization to amphetamine-like psychostimulants. Brain Res Brain Res Rev 25(2):192–216

    Article  PubMed  CAS  Google Scholar 

  • Porr B, Wörgötter F (2003) Isotropic sequence order learning. Neural Comput 15(4):831–864

    Article  PubMed  Google Scholar 

  • Rabinovich M, Huerta R, Laurent G (2008) Neuroscience. Transient dynamics for neural processing. Science 321(5885):48–50

    Article  PubMed  CAS  Google Scholar 

  • Rao RP, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2(1):79–87

    Article  PubMed  CAS  Google Scholar 

  • Redgrave P, Gurney K (2006) The short-latency dopamine signal: a role in discovering novel actions? Nat Rev, Neurosci 7(12):967–975

    Article  CAS  Google Scholar 

  • Redish AD (2004) Addiction as a computational process gone awry. Science 306:1944–1947

    Article  PubMed  CAS  Google Scholar 

  • Rescorla RA, Wagner AR (1972) A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In: Black AH, Prokasy WF (eds) Classical conditioning II: current research and theory. Appleton/Century Crofts, New York, pp 64–99

    Google Scholar 

  • Robbe D, Buzsáki G (2009) Alteration of theta timescale dynamics of hippocampal place cells by a cannabinoid is associated with memory impairment. J Neurosci 29(40):12597–12605

    Article  PubMed  CAS  Google Scholar 

  • Salzman CD, Belova MA, Paton JJ (2005) Beetles, boxes and brain cells: neural mechanisms underlying valuation and learning. Curr Opin Neurobiol 15(6):721–729

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80(1):1–27

    PubMed  CAS  Google Scholar 

  • Schultz W, Dickinson A (2000) Neuronal coding of prediction errors. Annu Rev Neurosci 23:473–500

    Article  PubMed  CAS  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Seip KM, Pereira M, Wansaw MP, Reiss JI, Dziopa EI, Morrell JI (2008) Incentive salience of cocaine across the postpartum period of the female rat. Psychopharmacology 199(1):119–130

    Article  PubMed  CAS  Google Scholar 

  • Sheynikhovich D, Chavarriaga R, Strösslin T, Arleo A, Gerstner W (2009) Is there a geometric module for spatial orientation? Insights from a rodent navigation model. Psychol Rev 116(3):540–566

    Article  PubMed  Google Scholar 

  • Shreve S, Soner HM (1994) Optimal investment and consumption with transaction costs. Ann Appl Probab 4:609–692

    Article  Google Scholar 

  • Sutton RS, Barto AG (1981) Toward a modern theory of adaptive networks: expectation and prediction. Psychol Rev 88(2):135–170

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Schoenbaum G, Niv Y (2008) Silencing the critics: understanding the effects of cocaine sensitization on dorsolateral and ventral striatum in the context of an actor/critic model. Front Neurosci 2:86–99

    Article  PubMed  Google Scholar 

  • Tani J, Ito M, Sugita Y (2004) Self-organization of distributedly represented multiple behavior schemata in a mirror system: reviews of robot experiments using RNNPB. Neural Netw 17:1273–1289

    Article  PubMed  Google Scholar 

  • Thiagarajan TC, Lebedev MA, Nicolelis MA, Plenz D (2010) Coherence potentials: loss-less all-or-none network events in the cortex. PLoS Biol 8(1):e1000278

    Article  PubMed  CAS  Google Scholar 

  • Todorov E (2006) Linearly-solvable Markov decision problems. In: Scholkopf et al. (ed) Advances in neural information processing systems, vol 19, pp 1369–1376. MIT Press, Cambridge

    Google Scholar 

  • Traulsen A, Claussen JC, Hauert C (2006) Coevolutionary dynamics in large, but finite populations. Phys Rev E, Stat Nonlinear Soft Matter Phys 74(1 Pt 1):011901

    Article  CAS  Google Scholar 

  • Tschacher W, Haken H (2007) Intentionality in non-equilibrium systems? The functional aspects of self-organised pattern formation. New Ideas Psychol 25:1–15

    Article  Google Scholar 

  • Tsuda I (2001) Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav Brain Sci 24(5):793–810

    Article  PubMed  CAS  Google Scholar 

  • Tyukin I, van Leeuwen C, Prokhorov D (2003) Parameter estimation of sigmoid superpositions: dynamical system approach. Neural Comput 15(10):2419–2455

    Article  PubMed  Google Scholar 

  • Tyukin I, Tyukina T, van Leeuwen C (2009) Invariant template matching in systems with spatiotemporal coding: a matter of instability. Neural Netw 22(4):425–449

    Article  PubMed  Google Scholar 

  • van Leeuwen C (2008) Chaos breeds autonomy: connectionist design between bias and baby-sitting. Cogn Process 9(2):83–92

    Article  PubMed  Google Scholar 

  • Verschure PF, Voegtlin T, Douglas RJ (2003) Environmentally mediated synergy between perception and behavior in mobile robots. Nature 425:620–624

    Article  PubMed  CAS  Google Scholar 

  • Watkins CJCH, Dayan P (1992) Q-learning. Mach Learn 8:279–292

    Google Scholar 

  • Wittmann BC, Bunzeck N, Dolan RJ, Duzel E (2007) Anticipation of novelty recruits reward system and hippocampus while promoting recollection. Neuroimage 38:194–202

    Article  PubMed  Google Scholar 

  • Zack M, Poulos CX (2009) Parallel roles for dopamine in pathological gambling and psychostimulant addiction. Curr Drug Abus Rev 2(1):11–25

    Article  CAS  Google Scholar 

  • Zhao Y, Kerscher N, Eysel U, Funke K (2001) Changes of contrast gain in cat dorsal lateral geniculate nucleus by dopamine receptor agonists. Neuroreport 12(13):2939–2945

    Article  PubMed  CAS  Google Scholar 

  • Zink CF, Pagnoni G, Chappelow J, Martin-Skurski M, Berns GS (2006) Human striatal activation reflects degree of stimulus saliency. Neuroimage 29:977–983

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The Wellcome Trust funded this work and greatest thanks to Marcia Bennett for helping prepare this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Friston .

Editor information

Editors and Affiliations

Appendices

Appendix A: Parameter Optimisation and Newton’s Method

There is a close connection between the updates implied by Eq. (9.9) and Newton’s method for optimisation. Consider the update under a local linearisation, assuming \(\mathcal{L}_{\varphi}\approx\mathcal{F}_{\varphi}\)

(A.1)

As time proceeds, the change in generalised mean becomes

(A.2)

The first line means the motion cancels itself and becomes zero, while the change in the conditional mean \(\Delta\mu^{(\varphi )} = -\mathcal{L}_{\varphi \varphi} ^{ - 1}\mathcal{L}_{\varphi}\) becomes a classical Newton update. The conditional expectations of the parameters were updated after every simulated exposure using this scheme, as described in Friston (2008).

Appendix B: Simulating Action and Perception

The simulations in this paper involve integrating time-varying states in the environment and the agent. This is the solution to the following ordinary differential equation

(B.1)

To update these states we use a local linearisation; \(\Delta u =(\exp(\Delta t\Im) - I)\Im(t)^{ - 1}\dot{u}\) over time steps of Δt, where \(\Im = \partial\dot{u} / \partial u\) is evaluated at the current conditional expectation (Friston et al. 2010).

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Friston, K. (2012). Policies and Priors. In: Gutkin, B., Ahmed, S. (eds) Computational Neuroscience of Drug Addiction. Springer Series in Computational Neuroscience, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0751-5_9

Download citation

Publish with us

Policies and ethics