Skip to main content

Experimentally Estimating Phase Response Curves of Neurons: Theoretical and Practical Issues

  • Chapter
  • First Online:
Phase Response Curves in Neuroscience

Abstract

Phase response curves (PRCs) characterize response properties of oscillating neurons to pulsetile input and are useful for linking the dynamics of individual neurons to network dynamics. PRCs can be easily computed for model neurons. PRCs can be also measured for real neurons, but there are many issues that complicate this process. Most of these complications arise from the fact that neurons are noisy on several time-scales. There is considerable amount of variation (jitter) in the inter-spike intervals of “periodically” firing neurons. Furthermore, neuronal firing is not stationary on the time scales on which PRCs are usually measured. Other issues include determining the appropriate stimuli to use and how long to wait between stimuli.In this chapter, we consider many of the complicating factors that arise when generating PRCs for real neurons or “realistic” model neurons. We discuss issues concerning the stimulus waveforms used to generate the PRC and ways to deal with the effects of slow time-scale processes (e.g. spike frequency adaption). We also address issues that are present during PRC data acquisition and discuss fitting “noisy” PRC data to extract the underlying PRC and quantify the stochastic variation of the phase responses. Finally, we describe an alternative method to generate PRCs using small amplitude white noise stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The time constants of the synaptic currents will be faster than those for the PSP because the current waveform is filtered due to the RC properties neuronal membrane. To find the time constants of the synaptic currents, one can adjust these time constants until the current stimulus induces a PSP waveform that adequately matches an actual PSP.

  2. 2.

    In general, the iPRC is equivalent to the gradient of phase with respect to all state variables evaluated at all points along the limit cycle (i.e. it is a vector measuring the sensitivity to perturbations in any variable). However, because neurons are typically only perturbed by currents, the iPRC for neurons is usually taken to be the voltage component of this gradient \(\left ( \frac{\partial \phi } {\partial V }\right )\) evaluated along the limit cycle.

  3. 3.

    A delta-function is a pulse with infinite height and zero width with an area of one. Injecting a delta-function current into a cell corresponds to instantaneously injecting a fixed charge into the cell, which results in an instantaneous jump in the cell’s membrane potential by a fixed amount.

  4. 4.

    The definition of a convolution is \(g {_\ast} f(\psi ) = \int \nolimits \nolimits g(\psi - t)f(t)\mathrm{d}t = \int \nolimits \nolimits g(-(t - \psi ))f(t)\mathrm{d}t\), so technically, \(PRC(\phi ) = Z {_\ast} l(-\phi T)\).

  5. 5.

    Note that this could be done for polynomial fits too by using orthogonal polynomials (e.g., Legrendre or Chebychev polynomials).

  6. 6.

    This formula for the AIC assumes that errors are independently distributed and described by a Gaussian distribution.

References

  • Burnham, K. P., & Anderson, D. R. (1998). Model selection and inference: A practical information-theoretic approach. New York: Springer.

    Google Scholar 

  • Canavier, C. C. (2005). The application of phase resetting curves to the analysis of pattern generating circuits containing bursting neurons. In S. Coombes, P. C. Bressloff & N. J. Hackensack (Eds.), Bursting: The genesis of rhythm in the nervous system (pp. 175–200) World Scientific.

    Google Scholar 

  • Cruikshank, S. J., Lewis, T. J., & Connors, B. W. (2007). Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex.Nature Neuroscience, 10(4), 462–468. doi:10.1038/nn1861.

    PubMed  CAS  Google Scholar 

  • Cui, J., Canavier, C. C., & Butera, R. J. (2009). Functional phase response curves: A method for understanding synchronization of adapting neurons.Journal of Neurophysiology, 102(1), 387–398. doi:10.1152/jn.00037.2009.

    Article  PubMed  Google Scholar 

  • Dorval, A. D., 2nd, Bettencourt, J., Netoff, T. I., & White, J. A. (2007). Hybrid neuronal network studies under dynamic clamp.Methods in Molecular Biology (Clifton, N.J.), 403, 219–231. doi:10.1007/978–1–59745–529–9_15.

    Google Scholar 

  • Dorval, A. D., Bettencourt, J. C., Netoff, T. I., & White, J. A. (2008). Hybrid neuronal network studies under dynamic clamp. In Applied patch clamp Humana.

    Google Scholar 

  • Dorval, A. D., Christini, D. J., & White, J. A. (2001). Real-time linux dynamic clamp: A fast and flexible way to construct virtual ion channels in living cells.Ann Biomed Eng, 29(10), 897–907.

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout, G. B., Beverlin, B., 2nd, Troyer, T., & Netoff, T. I. (2011). The variance of phase-resetting curves. J Comput Neurosci, [Epub ahead of print].

    Google Scholar 

  • Ermentrout, G. B., & Chow, C. C. (2002). Modeling neural oscillations.Physiol Behav, 77(4–5), 629–633.

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout, G. B., Galan, R. F., & Urban, N. N. (2007). Relating neural dynamics to neural coding.Physical Review Letters, 99(24), 248103.

    Article  PubMed  Google Scholar 

  • Ermentrout, G. B., & Kopell, N. (1991). Multiple pulse interactions and averaging in systems of coupled neural oscillators.J Math Biol, 29, 195–217.

    Article  Google Scholar 

  • Galan, R. F., Ermentrout, G. B., & Urban, N. N. (2005). Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling.Physical Review Letters, 94(15), 158101.

    Article  PubMed  Google Scholar 

  • Galán, R. F., Bard Ermentrout, G., & Urban, N. N. (2006). Predicting synchronized neural assemblies from experimentally estimated phase-resetting curves.Neurocomputing, 69(10–12), 1112–1115. doi:DOI: 10.1016/j.neucom.2005.12.055.

    Article  Google Scholar 

  • Golomb, D., & Amitai, Y. (1997). Propagating neuronal discharges in neocortical slices: Computational and experimental study.Journal of Neurophysiology, 78(3), 1199–1211.

    PubMed  CAS  Google Scholar 

  • Hille, B. (1992). Ionic channels of excitable membranes (2nd ed.). Sunderland: Sinauer Associates.

    Google Scholar 

  • Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge: MIT.

    Google Scholar 

  • Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. Berlin: Springer.

    Book  Google Scholar 

  • Lewis, T. J., & Rinzel, J. (2003). Dynamics of spiking neurons connected by both inhibitory and electrical coupling.Journal of Computational Neuroscience, 14(3), 283–309.

    Article  PubMed  Google Scholar 

  • Mancilla, J. G., Lewis, T. J., Pinto, D. J., Rinzel, J., & Connors, B. W. (2007). Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex.The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(8), 2058–2073. doi:10.1523/JNEUROSCI.2715–06.2007.

    Article  CAS  Google Scholar 

  • Maran, S. K., & Canavier, C. C. (2008). Using phase resetting to predict 1:1 and 2:2 locking in two neuron networks in which firing order is not always preserved.Journal of Computational Neuroscience, 24(1), 37–55. doi:10.1007/s10827–007–0040-z.

    Article  PubMed  Google Scholar 

  • Miranda-Dominguez, O., Gonia, J., & Netoff, T. I. (2010). Firing rate control of a neuron using a linear proportional-integral controller.Journal of Neural Engineering, 7(6), 066004. doi:10.1088/1741–2560/7/6/066004.

    Article  PubMed  CAS  Google Scholar 

  • Netoff, T. I., Acker, C. D., Bettencourt, J. C., & White, J. A. (2005). Beyond two-cell networks: Experimental measurement of neuronal responses to multiple synaptic inputs.Journal of Computational Neuroscience, 18(3), 287–295. doi:10.1007/s10827–005–0336–9.

    Article  PubMed  Google Scholar 

  • Netoff, T. I., Banks, M. I., Dorval, A. D., Acker, C. D., Haas, J. S., Kopell, N., & White, J. A. (2005). Synchronization in hybrid neuronal networks of the hippocampal formation.Journal of Neurophysiology, 93(3), 1197–1208. doi:00982.2004 [pii]; 10.1152/jn.00982.2004.

    Article  PubMed  Google Scholar 

  • Oprisan, S. A., & Canavier, C. C. (2001). Stability analysis of rings of pulse-coupled oscillators: The effect of phase-resetting in the second cycle after the pulse is important at synchrony and for long pulses.Differential Equations and Dynamical Systems, 9, 243–258.

    Google Scholar 

  • Ota, K., Omori, T., & Aonishi, T. (2009). MAP estimation algorithm for phase response curves based on analysis of the observation process.Journal of Computational Neuroscience, 26(2), 185–202. doi:10.1007/s10827–008–0104–8.

    Article  PubMed  Google Scholar 

  • Ota, K., Nomura, M., & Aoyagi, T. (2009). Weighted spike-triggered average of a fluctuating stimulus yielding the phase response curve.Physical Review Letters, 103(2), 024101. doi:10.1103/PhysRevLett.103.024101.

    Article  PubMed  Google Scholar 

  • Press, W. H. (1992). Numerical recipes in C: The art of scientific computing (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Prinz, A. A., Abbott, L. F., & Marder, E. (2004). The dynamic clamp comes of age.Trends in Neurosciences, 27(4), 218–224. doi:10.1016/j.tins.2004.02.004.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, A. A., O’Neil, M. B., Abbott, L. F., & Marder, E. (1993). Dynamic clamp: Computer-generated conductances in real neurons.J Neurophysiol, 69(3), 992–995.

    PubMed  CAS  Google Scholar 

  • Tateno, T., & Robinson, H. P. (2007). Phase resetting curves and oscillatory stability in interneurons of rat somatosensory cortex.Biophysical Journal, 92(2), 683–695. doi:10.1529/biophysj.106.088021.

    Article  PubMed  CAS  Google Scholar 

  • Van Vreeswijk, C., Abbott, L. F., & Ermentrout, G. B. (1994). When inhibition not excitation synchronizes neural firing.J Comput Neurosci, 1(4), 313–321.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

TJL and MAS were supported by the National Science Foundation under grants DMS-09211039 (TJL), DMS-0518022 (TJL), TIN was supported by NSF CAREER Award CBET-0954797 (TIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theoden Netoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Netoff, T., Schwemmer, M.A., Lewis, T.J. (2012). Experimentally Estimating Phase Response Curves of Neurons: Theoretical and Practical Issues. In: Schultheiss, N., Prinz, A., Butera, R. (eds) Phase Response Curves in Neuroscience. Springer Series in Computational Neuroscience, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0739-3_5

Download citation

Publish with us

Policies and ethics