Skip to main content

Solid Polymer Electrolytes

  • Chapter
  • First Online:
Dynamics of Soft Matter

Part of the book series: Neutron Scattering Applications and Techniques ((NEUSCATT))

Abstract

Solid polymer electrolytes which are solvent-free electrolytes based on polymers have potential for use in next-generation lithium ion batteries. These batteries, used in cell phones and laptop computers, currently contain a liquid electrolyte. Replacing the liquid electrolyte currently used has several advantages: it allows use of higher-energy density solid lithium at the anode, removes toxic solvents, improves cycling ability, and eliminates the need for heavy casings. Despite the advantages of solid polymer electrolytes, their conductivity is not sufficient for use in batteries. As a result, considerable effort towards improving their conductivity and understanding the mechanisms of lithium transport has taken place over the last 20 years. Quasi-elastic neutron scattering has provided the link between the motion of the polymer host and lithium transport. Such measurements have provided detailed information on the dynamics of the polymer host and enabled connection of this motion to lithium transport. Structural neutron measurements can also play a role in solid polymer electrolytes: small angle scattering has determined the extent and type of crystalline regions commonly thought to impede conductivity and addressed dispersion of nanoparticle fillers. This chapter considers the interplay of conductivity, crystallinity, local coordination, and polymer dynamics in solid polymer electrolytes. We also consider the impact, analogy to confinement, and state of aggregation of nanoparticle fillers. The material is presented as a review, illustrated with specific examples using neutron scattering from our work on poly(ethylene oxide) with LiClO4; both unfilled and filled with 11 nm alumina nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    CAS  Google Scholar 

  2. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14:589

    CAS  Google Scholar 

  3. Armand MB, Chabagno JM, Duclot MJ (1979) In: Vashishta P (ed) Fast ion transport in solids. North Holland, New York, p 131

    Google Scholar 

  4. Singh TJ, Mimani T, Patil KC, Bhat SV (2002) Enhanced lithium-ion transport in PEG-based composite polymer electrolyte with Mn0. 03Zn0. 97Al2O4 nanoparticles. Solid State Ionics 154:21–27

    Google Scholar 

  5. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458

    CAS  Google Scholar 

  6. Chiu C-Y, Chen H-W, Kuo S-W, Huang C-F, Chang F-C (2004) Investigating the effect of miscibility on the ionic conductivity of LiClO4/PEO/PCL ternary blends. Macromolecules 37:8424–8430

    CAS  Google Scholar 

  7. Imrie CT, Ingram MD, McHattie GS (1999) Ion transport in glassy polymer electrolytes. J Phys Chem B 103:4132–4138

    CAS  Google Scholar 

  8. Tominaga Y, Izumi Y, Kwak G-H, Asai S, Sumita M (2003) Effect of supercritical carbon dioxide processing on the ionic association and conduction in a crystalline poly(ethylene oxide)-LiCF3SO3 complex. Macromolecules 36:8766–8772

    CAS  Google Scholar 

  9. Choi B-K (2004) Optical microscopy study on the crystallization in PEO-salt polymer electrolytes. Solid State Ionics 168:123–129

    CAS  Google Scholar 

  10. Rocco AM, da Fonseca CP, Pereira RP (2002) A polymeric solid electrolyte based on a binary blend of poly(ethylene oxide), poly(methyl vinyl ether-maleic acid) and LiClO4. Polymer 43:3601–3609

    CAS  Google Scholar 

  11. Lin J-H, Woo EM, Huang Y-P (2006) Effects of lithium salt and poly(4-vinyl phenol) on crystalline and amorphous phases in poly(ethylene oxide). J Polymer Sci B Polymer Phys 44:3357–3386

    CAS  Google Scholar 

  12. Bamford D, Reiche A, Dlubek G, Alloin F, Sanchez J-Y, Alam MA (2003) Ionic conductivity, glass transition, and local free volume in poly(ethylene oxide) electrolytes: single and mixed ion conductors. J Chem Phys 118:9420–9432

    CAS  Google Scholar 

  13. Robitaille CD, Fauteux D (1986) Phase diagrams and conductivity characterization of some PEO-LiX electrolytes. J Electrochem Soc 133:315–325

    CAS  Google Scholar 

  14. Mao G, Saboungi M-L, Price DL, Badyal YS, Fischer HE (2001) Lithium environment in PEO-LiClO4 polymer electrolyte. Europhys Lett 54:347–353

    CAS  Google Scholar 

  15. Marzantowicz M, Dygas JR, Krok F, Nowiński JL, Tomaszewska A, Florjańczyk Z, Zygadło-Monikowska E (2006) Crystalline phases, morphology and conductivity of PEO;TFSI electrolytes in the eutectic region. J Power Sources 159:420–430

    CAS  Google Scholar 

  16. Henderson WA, Passerini S (2003) Ionic conductivity in crystalline-amorphous polymer electrolytes–P(EO)6:LiX phase. Electrochem Commun 5:575–578

    CAS  Google Scholar 

  17. Lascaud S, Perrier M, Vallée A, Besner S, Prud’homme J (1994) Phase diagrams and conductivity behavior of poly(ethylene oxide)-molten salt rubbery electrolytes. Macromolecules 27:7469–7477

    CAS  Google Scholar 

  18. Marzantowicz M, Dygas JR, Krok F, Łasińska A, Florjańczyk Z, Zygadło-Monikowska E (2006) In situ microscope and impedance study of polymer electrolytes. Electrochim Acta 51:1713–1727

    CAS  Google Scholar 

  19. Marzantowicz M, Dygas JR, Krok F, Florjańczyk Z, Zygadło-Monikowska E (2007) Influence of crystalline complexes on electrical properties of PEO:LiTFSI electrolyte. Electrochim Acta 53:1518–1526

    CAS  Google Scholar 

  20. Edman L, Ferry A, Doeff MM (2000) Slow recrystallization in the polymer electrolyte system poly(ethyleneoxide)n-LiN(CF3SO2)2. J Mater Res 15:1950–1954

    CAS  Google Scholar 

  21. Mao G, Saboungi M-L, Price DL, Armand MB, Howells WS (2000) Structure of liquid PEO-TFSI electrolyte. Phys Rev Lett 84:5536–5539

    CAS  Google Scholar 

  22. Londono JD, Annis BK, Habenschuss A, Borodin O, Smith GD, Turner JZ, Soper AK (1997) Cation environment in molten lithium iodide doped poly(ethylene oxide). Macromolecules 30:7151–7157

    CAS  Google Scholar 

  23. Labrèche C, Lévesque I, Prud’homme J (1996) An appraisal of tetraethylsulfamide as plasticizer for poly(ethylene oxide)-LiN(CF3SO2)2 rubbery electrolytes. Macromolecules 29:7795–7801

    Google Scholar 

  24. Armand MB (1986) Polymer electrolytes. Ann Rev Mater Sci 16:245–251

    CAS  Google Scholar 

  25. Gadjourova Z, Martin y Marero D, Andersen KH, Andreev YG, Bruce PG (2001) Structures of the polymer electrolyte complexes PEO6:LiXF6(X = P, Sb), determined from neutron powder diffraction data. Chem Mater 13:1282–1285

    CAS  Google Scholar 

  26. Staunton E, Andreev YG, Bruce PG (2007) Factors influencing the conductivity of crystalline polymer electrolytes. Faraday Discuss 134:143–156

    CAS  Google Scholar 

  27. Golodnitsky E, Livshits E, Rosenberg Y, Peled E, Chung SH, Wang Y, Bajue S, Greenbaum SG (2000) A new approach to the understanding of ion transport in semicrystalline polymer electrolytes. J Electroanal Chem 491:203–210

    CAS  Google Scholar 

  28. Fullerton-Shirey SK, Maranas JK (2009) Effect of LiClO4 on the structure and mobility of PEO-based solid polymer electrolytes. Macromolecules 42:2142–2156

    CAS  Google Scholar 

  29. Fateux D (1987) Phase equilibria. In: MacCallum JR, Vincent CA (eds) Polymer electrolyte reviews. Elsevier Applied Science, New York

    Google Scholar 

  30. Borodin O, Smith GD (2000) Molecular dynamics simulations of poly(ethylene oxide)/LiI melts 2. Dynamic properties. Macromolecules 33:2273–2283

    CAS  Google Scholar 

  31. Müller-Plathe F, van Gunsteren WF (1995) Computer simulation of a polymer electrolyte: lithium iodide in amorphous poly(ethylene oxide). J Chem Phys 103:4745–4756

    Google Scholar 

  32. Mao G, Perea RF, Howells WS, Price DL, Saboungi M-L (2000) Relaxation in polymer electrolytes on the nanosecond timescale. Nature 405:163–165

    CAS  Google Scholar 

  33. Mao G, Saboungi M-L, Price DL, Armand M, Mezei F, Pouget S (2000) a-Relaxation in PEO-LiTFSI polymer electrolytes. Macromolecules 35:415–419

    Google Scholar 

  34. Mos B, Verkerk P, Pouget S, van Zon A, Bel G-J, de Leeuw SW, Eisenbach CD (2000) The dynamics in polyethyleneoxide-alkali iodide complexes investigated by neutron spin-echo spectroscopy and molecular dynamics simulations. J Chem Phys 113:4–7

    CAS  Google Scholar 

  35. Triolo A, Arrighi V, Triolo R, Passerini S, Mastragostino M, Lechner RE, Ferguson R, Borodin O, Smith GD (2001) Dynamic heterogeneity in polymer electrolytes. Comparison between QENS data and MD simulations. Physica B 301:163–167

    CAS  Google Scholar 

  36. Triolo A, Lo Celso F, Passerini S, Arrigí V, Lechner RE, Frick B, Triolo R (2002) Segmental dynamics in polymer electrolytes. Appl Phys A 74:S493–S495

    CAS  Google Scholar 

  37. Carlsson P, Zorn R, Andersson D, Farago B, Howells WS, Börjesson L (2001) The segmental dynamics of a polymer electrolyte investigated by coherent quasielastic neutron scattering. J Chem Phys 114:9645–9656

    CAS  Google Scholar 

  38. Capiglia C, Imanashi N, Takeda Y, Henderson WA, Passerini S (2003) Poly(ethylene oxide) LiN(SO2CF2CF3)2 polymer electrolytes IV. Raman characterization. J Electrochem Soc 150:A525–A531

    CAS  Google Scholar 

  39. Scrosati B, Croce F, Persi L (2000) Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. J Electrochem Soc 147:1718–1721

    CAS  Google Scholar 

  40. Ahn JH, Wang GX, Liu HK, Dou SX (2003) Nanoparticle dispersed PEO composites for Li batteries. J Power Sources 119–121:422–426

    Google Scholar 

  41. Forsyth M, MacFarlane DR, Best A, Adebahr J, Jacobsson P, Hill AJ (2002) The effect of nano-particle TiO2 fillers on structure and transport in polymer electrolytes. Solid State Ionics 147:203–211

    CAS  Google Scholar 

  42. Borghini MC, Mastragostino M, Passerini S, Scrosati B (1995) Electrochemical properties of polyethylene oxide-Li[(CF3SO2)(2)N]-gamma-LiAlO2 composite polymer electrolytes. J Electrochem Soc 142:2118–2121

    CAS  Google Scholar 

  43. Dissanayake MAKL, Jayathilaka PARD, Bokalawala RSP, Albinsson I, Mellander B-E (2003) Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)9LiCF3SO3 : Al2O3 composite polymer electrolyte. J Power Sources 119:409–414

    Google Scholar 

  44. Weston JE, Steele BCH (1982) Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ionics 7:75–79

    CAS  Google Scholar 

  45. Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson MA (2001) Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim Acta 46:2457–2461

    CAS  Google Scholar 

  46. Jayathilaka PARD, Dissanayake MAKL, Albinsson I, Mellander B-E (2002) Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system. Electrochim Acta 47:3257–3268

    CAS  Google Scholar 

  47. Tambelli CC, Bloise AC, Rosário AV, Pereira EC, Magon CJ (2002) Characterisation of PEO-Al2O3 composite polymer electrolytes. Electrochim Acta 47:1677–1682

    CAS  Google Scholar 

  48. Bloise AC, Tambelli CC, Franco RWA, Donoso JP, Magon CJ, Souza MF, Rosario AV, Pereira EC (2001) Nuclear magnetic resonance study of PEO-based composite polymer electrolytes. Electrochim Acta 46:1571–1579

    CAS  Google Scholar 

  49. Croce F, Curini R, Martinelli A, Persi L, Ronci F, Scrosati B, Caminiti R (1999) Physical and chemical properties of nanocomposite polymer electrolytes. J Phys Chem B 103:10632–10638

    CAS  Google Scholar 

  50. Quartarone E, Mustarelli P, Magistris A (1998) PEO-based composite polymer electrolytes. Solid State Ionics 110:1–14

    CAS  Google Scholar 

  51. Kumar B, Scanlon LG (2000) Composite electrolytes for lithium rechargeable batteries. J Electroceramics 5(2):127–139

    CAS  Google Scholar 

  52. Dai Y, Greenbaum S, Golodnitsky D, Ardel G, Strauss E, Peled E, Rosenberg Y (1998) Lithium-7 NMR studies of concentrated LiI/PEO-based solid electrolytes. Solid State Ionics 106:25–32

    CAS  Google Scholar 

  53. Wieczorek W, Florja’nczyk Z, Stevens JR (1995) Composite polyether based solid electrolytes. Electrochim Acta 13–14:2251–2258

    Google Scholar 

  54. Fullerton-Shirey SK, Maranas JK (2010) Structure and mobility of PEO/LiClO4 sOLID polymer electrolytes filled with Al2O3 nanoparticles. J Phys Chem C 114:9196–9206

    CAS  Google Scholar 

  55. Bloise AC, Tambelli CC, Franco RWA, Donoso JP, Magon CJ, Souza MF, Rosario AV, Pereira EC (2001) Nuclear magnetic resonance study of PEO-based composite polymer electrolytes. Electrochim Acta 46:1571–1579

    CAS  Google Scholar 

  56. Marcinek M, Bac A, Lipka P, Zalewska A, Zukowska G, Borkowska R, Wieczorek W (2000) Effect of filler surface group on ionic interactions in PEO-LiClO4-Al2O3 composite polyether electrolytes. J Phys Chem B 104:11088–11093

    CAS  Google Scholar 

  57. Karlsson C, Best AS, Swenson J, Howells WS, Börjesson L (2003) Polymer dynamics in 3PEG-LiClO4-TiO2 nanocomposite polymer electrolytes. J Chem Phys 118:4206–4212

    CAS  Google Scholar 

  58. Cole DH, Shull KR, Baldo P, Rehn L (1999) Dynamic properties of a model polymer/metal nanocomposite: gold particles in poly(tert-butyl acrylate). Macromolecules 32:771–779

    CAS  Google Scholar 

  59. Guyard A, Persello J, Boisvert J-P, Cabane B (2006) Relationship between the polymer/silica interaction and properties of silica composite materials. J Polymer Sci B Polymer Phys 44:1134–1146

    CAS  Google Scholar 

  60. Chen Y, Zhou S, Yang H, Wu L (2005) Structure and properties of polyurethane/nanosilica composites. J Appl Polymer Sci 95:1032–1039

    CAS  Google Scholar 

  61. Oberdisse J, Deme B (2002) Structure of latex-silica nanocomposite films: a small angle neutron scattering study. Macromolecules 35:4397–4405

    CAS  Google Scholar 

  62. Zhang Q, Archer LA (2002) Poly(ethylene oxide)/silica nanocomposites: structure and rheology. Langmuir 18:10435–10442

    CAS  Google Scholar 

  63. Xiong H-M, Zhao X, Chen J-S (2001) New polymer-inorganic nanocomposites: PEO-ZnO and PEO-ZnO-LiClO4 films. J Phys Chem B 105:10169–10174

    CAS  Google Scholar 

  64. Oberdisse J, El Harrak A, Carrot G, Jestin J, Boué F (2005) Structure and rheological properties of soft-hard nanocomposites: influence of aggregation and interfacial modification. Polymer 46:6695–6705

    CAS  Google Scholar 

  65. Karlsson C, Best AS, Swenson J, Kohlbrecher J, Börjesson L (2005) A SANS study of 3PEG-LiClO4-TiO2 nanocomposite polymer electrolytes. Macromolecules 38:6666–6671

    CAS  Google Scholar 

  66. Johansson P, Ratner MA, Shriver DF (2001) The influence of inert oxide3 fillers on poly(ethylene oxide) and amorphous poly(ethylene oxide) based polymer electrolytes. J Phys Chem B 105:9016–9021

    CAS  Google Scholar 

  67. Best AS, Ferry A, MacFarlane DR, Forsyth M (1999) Conductivity in amorphous polyether nanocomposite materials. Solid State Ionics 126:269–276

    CAS  Google Scholar 

  68. Tominaga Y, Asai S, Sumita M, Panero S, Scrosati B (2005) A novel composite polymer electrolyte: effect of mesoporous SiO2 on ionic conduction in poly(ethylene oxide)-LiCF3SO3 complex. J Power Sources 146:402–406

    CAS  Google Scholar 

  69. Krawiec W, Scanlon LG, Fellner JP, Vaia RA, Vasudevan S, Giannelis EP (1995) Polymer nanocomposites: a new strategy for synthesizing solid electrolytes for rechargeable lithium batteries. J Power Sources 54:310–315

    CAS  Google Scholar 

  70. Capiglia C, Mustarelli P, Quartarone E, Tomasi C, Magistris A (1999) Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes. Solid State Ionics 118:73–79

    CAS  Google Scholar 

  71. Wieczorek W, Stevens JR, Florjańczyk Z (1996) Composite polyether based solid electrolytes. The Lewis acid-base approach. Solid State Ionics 85:67–72

    CAS  Google Scholar 

  72. Choi B-K, Kim Y-W, Shin K-H (1997) Effects of ceramic fillers on the electrical properties of (PEO)16LiClO4 electrolytes. J Power Sources 68:357–360

    CAS  Google Scholar 

  73. Ellison CJ, Torkelson JM (2003) The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat Mater 2:695–700

    CAS  Google Scholar 

  74. Fryer DS, Nealey PF, de Pablo JJ (2000) Thermal probe measurements of the glass transition temperature for ultrathin polymer films as a function of thickness. Macromolecules 33:6439–6447

    CAS  Google Scholar 

  75. Forrest JA, Mattsson J (2000) Reductions of the glass transition temperature in thin polymer films: probing the length scale of cooperative dynamics. Phys Rev E 61:R53–R56

    CAS  Google Scholar 

  76. Priestley RD, Ellison CJ, Broadbelt LJ, Torkelson JM (2005) Structural relaxation of polymer glasses at surfaces, interfaces, and in between. Science 309:456–459

    CAS  Google Scholar 

  77. Ash BJ, Siegel RW, Schadler LS (2004) Glass-transition temperature behavior of alumina/PMMA nanocomposites. J Polymer Sci B 42:4371–4383

    CAS  Google Scholar 

  78. Sharp JS, Forrest JA (2003) Free surfaces cause reductions in the glass transition temperature of think polystyrene films. Phys Rev Lett 91:235701-1–235701-4

    CAS  Google Scholar 

  79. Bansal A, Yang H, Li C, Cho K, Benicewicz BC, Kumar SK, Schadler LS (2005) Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat Mater 4:693–698

    CAS  Google Scholar 

  80. Chen YC, Zhou SX, Yang HH, Gu GX, Wu LM (2004) Preparation and characterization of nanocomposite polyurethane. J Colloid Interface Sci 279:370–378

    CAS  Google Scholar 

  81. Winberg P, Eldrup M, Maurer FHJ (2004) Nanoscopic properties of silica filled polydimethylsiloxane by means of positron annihilation lifetime spectroscopy. Polymer 45:8253–8264

    CAS  Google Scholar 

  82. Ash BJ, Schadler LS, Siegel RW (2002) Glass transition behavior of alumina/ polymethylmethacrylate nanocomposites. Mater Lett 55:83–87

    CAS  Google Scholar 

  83. Borodin O, Smith GD, Bandyopadhyaya R, Byutner O (2003) Molecular dynamics study of the influence of solid interfaces on poly(ehthylene oxide) structure and dynamics. Macromolecules 36:7873–7883

    CAS  Google Scholar 

  84. Barbier D, Brown D, Grillet A-C, Neyertz S (2004) Interface between end-functionalize PEO oligomers and a silica nanoparticle studied by molecular dynamics simulations. Macromolecules 37:4695–4710

    CAS  Google Scholar 

  85. Elmahdy MM, Chrissopoulou K, Afratis A, Floudas G, Anastasiadis SH (2006) Effect of confinement on polymer segmental motion and ion mobility in PEO/layered silicate nanocomposites. Macromolecules 39:5170–5173

    CAS  Google Scholar 

  86. Wong S, Vaia RA, Giannelis EP, Zax DB (1996) Dynamics in a poly(ethylene oxide)-based nanocomposite polymer electrolyte probed by solid state NMR. Solid State Ionics 86–88:547–557

    Google Scholar 

  87. Vaia RA, Sauer BB, Tse OK, Giannelis EP (1997) Relaxations of confined chains in polymer nanocomposites: glass transition properties of poly(ethylene oxide) intercalated in montmorillonite. J Polymer Sci Polymer Phys 35:59–67

    CAS  Google Scholar 

  88. Dalnoki-Veress K, Forrest JA, Massa MV, Williams A (2001) Crystal growth rate in ultrathin films of poly(ethylene oxide). J Polymer Sci B 39:2615–2621

    CAS  Google Scholar 

  89. Floudas G, Tsitsilianis C (1997) Crystallization kinetics of poly(ethylene oxide) in poly(ethylene oxide)-polystyrene-poly(ethylene oxide) triblock copolymers. Macromolecules 30:4381–4390

    CAS  Google Scholar 

  90. Taden A, Landfester K (2003) Crystallization of poly(ethylene oxide) confined in miniemulsion droplets. Macromolecules 36:4037–4041

    CAS  Google Scholar 

  91. Sun L, Zhu L, Ge Q, Quirk RP, Xue C, Cheng SZD, Hsiao B, Avila-Orta CA, Sics I, Cantino ME (2004) Comparison of crystallization kinetics in various nanoconfined geometries. Polymer 45:2931–2939

    CAS  Google Scholar 

  92. Huang P, Zhu L, Guo Y, Ge Q, Jing AJ, Chen WY, Quirk RP, Cheng SZD, Thomas EL, Lotz B, Hsiao BS, Avila-Orta CA, Sics I (2004) Confinement size effect on crystal orientation changes of poly(ethylene oxide) blocks in poly(ethylene oxide)-b-polystyrene diblock copolymers. Macromolecules 37:3689–3698

    CAS  Google Scholar 

  93. Hsiao M-S, Chen WY, Zheng JX, Van Horn RM, Quirk RP, Ivanov DA, Thomas EL, Lotz B, Cheng SZD (2008) Poly(ethylene oxide) crystallization within a one-dimensional defect-free confinement on the nanoscale. Macromolecules 41:4794–4801

    CAS  Google Scholar 

  94. Massa MV, Dalnoki-Veress K, Forrest JA (2003) Crystallization kinetics and crystal morphology in thin poly(ethylene oxide) films. Eur Phys J E 11:191–198

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janna K. Maranas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Maranas, J.K. (2012). Solid Polymer Electrolytes. In: García Sakai, V., Alba-Simionesco, C., Chen, SH. (eds) Dynamics of Soft Matter. Neutron Scattering Applications and Techniques. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0727-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0727-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0726-3

  • Online ISBN: 978-1-4614-0727-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics