Advertisement

Adaptation and Contraction Theory for the Synchronization of Complex Neural Networks

  • Pietro DeLellis
  • Mario di Bernardo
  • Giovanni Russo
Part of the Springer Series in Cognitive and Neural Systems book series (SSCNS, volume 3)

Abstract

In this chapter, we will present two different approaches to solve the problem of synchronizing networks of interacting dynamical systems. The former will be based on making the coupling between agents in the network adaptive and evolving so that synchronization can emerge asymptotically. The latter will be using recent results from contraction theory to give conditions on the node dynamics and the network topology that result into the desired synchronized motion. The theoretical results will be illustrated by means of some representative examples, including networks of neural oscillators.

References

  1. 1.
    Anastassiou CA, Montgomery SM, Barahona M, Buzsaki G, Koch C (2010) The effect of spatially inhomogeneous extracellular electric fields on neurons. J Neurosci 30:1925–1936 PubMedCrossRefGoogle Scholar
  2. 2.
    Angeli D, Sontag ED (1999) Forward completeness, unboundedness observability, and their Lyapunov characterizations. Syst Control Lett 38:209–217 CrossRefGoogle Scholar
  3. 3.
    Bard E, Mason O (2009) Canars, clusters and synchronization in a weakly coupled interneuron model. SIAM J Appl Dyn Syst 8:253–278 CrossRefGoogle Scholar
  4. 4.
    Buzsaki G (2006) Rhythms of the brain. Oxford University Press, New York CrossRefGoogle Scholar
  5. 5.
    De Lellis P, di Bernardo M, Garofalo F (2009) Novel decentralized adaptive strategies for the synchronization of complex networks. Automatica 45(5):1312–1318 CrossRefGoogle Scholar
  6. 6.
    De Lellis P, di Bernardo M, Garofalo F (2008) Synchronization of complex networks through local adaptive coupling. Chaos 18:037110 PubMedCrossRefGoogle Scholar
  7. 7.
    De Lellis P, di Bernardo M, Sorrentino F, Tierno A (2008) Adaptive synchronization of complex networks. Int J Comput Math 85(8):1189–1218 CrossRefGoogle Scholar
  8. 8.
    De Lellis P, di Bernardo M, Garofalo F, Porfiri M (2010) Evolution of complex networks via edge snapping. IEEE Trans Circuits Syst I 57(8):2132–2143 CrossRefGoogle Scholar
  9. 9.
    De Lellis P, di Bernardo M, Russo G (2011) On QUAD, Lipschitz and contracting vector fields for consensus and synchronization of networks. IEEE Trans Circuits Syst I 58(3):576–583 CrossRefGoogle Scholar
  10. 10.
    El Boustani S, Marre O, Behuret P, Yger P, Bal T, Destexhe A, Fregnac Y (2009) Network-state modulation of power-law frequency-scaling in visual cortical neurons. PLoS Comput Biol 5:e1000519 PubMedCrossRefGoogle Scholar
  11. 11.
    FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1:445–466 PubMedCrossRefGoogle Scholar
  12. 12.
    Gerard L, Slotine JJ Neural networks and controlled symmetries, a generic framework. Available at: http://arxiv1.library.cornell.edu/abs/q-bio/0612049v2
  13. 13.
    Godsil C, Royle G (2001) Algebraic graph theory. Springer, New York CrossRefGoogle Scholar
  14. 14.
    Gonze D, Bernard S, Walterman C, Kramer A, Herzerl H (2005) Spontaneous synchronization of coupled circadian oscillators. Biophys J 89:120–129 PubMedCrossRefGoogle Scholar
  15. 15.
    Hartman P (1961) On stability in the large for systems of ordinary differential equations. Can J Math 13:480–492 CrossRefGoogle Scholar
  16. 16.
    Henson MA (2004) Modeling synchronization of yeast respiratory oscillations. J Theor Biol 231:443–458 PubMedCrossRefGoogle Scholar
  17. 17.
    Hong D, Sidel WM, Man S, Martin JV (2007) Extracellular noise-induced stochastic synchronization in heterogeneous quorum sensing network. J Theor Biol 245:726–736 PubMedCrossRefGoogle Scholar
  18. 18.
    Izhikevich EM (2006) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, Cambridge Google Scholar
  19. 19.
    Lai CW, Chen CK, Liao TL, Yan JJ (2007) Adaptive synchronization for nonlinear FitzHugh–Nagumo neurons in external electrical stimulation. Int J Adapt Control Signal Process 22:833–844 CrossRefGoogle Scholar
  20. 20.
    Lewis DC (1949) Metric properties of differential equations. Am J Math 71:294–312 CrossRefGoogle Scholar
  21. 21.
    Lohmiller W, Slotine JJE (1998) On contraction analysis for non-linear systems. Automatica 34:683–696 CrossRefGoogle Scholar
  22. 22.
    McMillen D, Kopell N, Hasty J, Collins JJ (2002) Synchronization of genetic relaxation oscillators by intercell signaling. Proc Natl Acad Sci USA 99:679–684 PubMedCrossRefGoogle Scholar
  23. 23.
    Medvedev GS, Kopell N (2001) Synchronization and transient dynamics in the chains of electrically coupled FitzHugh–Nagumo oscillators. SIAM J Appl Math 61:1762–1801 CrossRefGoogle Scholar
  24. 24.
    Michel AN, Liu D, Hou L (2007) Stability of dynamical systems: continuous, discontinuous, and discrete systems. Springer, New York Google Scholar
  25. 25.
    Neiman A, Schimansky-Geier L, Cornell-Bell A, Moss F (1999) Noise-enhanced phase synchronization in excitable media. Phys Rev Lett 83(23):4896–4899 CrossRefGoogle Scholar
  26. 26.
    Pavlov A, Pogromvsky A, van de Wouv N, Nijmeijer H (2004) Convergent dynamics, a tribute to Boris Pavlovich Demidovich. Syst Control Lett 52:257–261 CrossRefGoogle Scholar
  27. 27.
    Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nature 5:805–811 Google Scholar
  28. 28.
    Pham QC, Slotine JJE (2007) Stable concurrent synchronization in dynamic system networks. Neural Netw 20:62–77 PubMedCrossRefGoogle Scholar
  29. 29.
    Pham QC, Tabareau N, Slotine JJE (2009) A contraction theory approach to stochastic incremental stability. IEEE Trans Autom Control 54:816–820 CrossRefGoogle Scholar
  30. 30.
    Russo G, di Bernardo M (2009) An algorithm for the construction of synthetic self synchronizing biological circuits. In: IEEE international symposium on circuits and systems, pp 305–308 CrossRefGoogle Scholar
  31. 31.
    Russo G, di Bernardo M (2009) How to synchronize biological clocks. J Comput Biol 16:379–393 PubMedCrossRefGoogle Scholar
  32. 32.
    Russo G, Slotine JJE (2010) Global convergence of quorum-sensing networks. Phys Rev E 82(4), submitted Google Scholar
  33. 33.
    Russo G, di Bernardo M, Sontag ED (2010) Global entrainment of transcriptional systems to periodic inputs. PLoS Comput Biol 6(4):e1000739 PubMedCrossRefGoogle Scholar
  34. 34.
    Russo G, di Bernardo M, Slotine JJE (2011) A graphical approach to prove contraction of nonlinear circuits and systems. IEEE Trans Circuits and Syst I 58(2):336–348 CrossRefGoogle Scholar
  35. 35.
    Slotine JJ (2003) Modular stability tools for distributed computation and control. Int J Adapt Control Signal Process 17:397–416 CrossRefGoogle Scholar
  36. 36.
    Sontag ED (1998) Mathematical control theory. Deterministic finite-dimensional systems. Springer, New York Google Scholar
  37. 37.
    Tabareau N, Slotine JJ, Pham QC (2010) How synchronization protects from noise. PLoS Comput Biol 6:e1000637 PubMedCrossRefGoogle Scholar
  38. 38.
    Wang W, Slotine JJE (2005) On partial contraction analysis for coupled nonlinear oscillators. Biol Cybern 92:38–53 PubMedCrossRefGoogle Scholar
  39. 39.
    Yu W, De Lellis P, Chen G, di Bernardo M, Kurths J (2010) Distributed adaptive control of synchronization in complex networks. IEEE Trans Autom Control, submitted Google Scholar
  40. 40.
    Zhou C, Kurths J (2006) Dynamical weights and enhanced synchronization in adaptive complex networks. Phys Rev Lett 96:164102 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Pietro DeLellis
    • 1
  • Mario di Bernardo
    • 1
    • 2
  • Giovanni Russo
    • 1
  1. 1.Department of Systems and Computer EngineeringUniversity of Naples Federico IINaplesItaly
  2. 2.Department of Engineering MathematicsUniversity of BristolBristolUK

Personalised recommendations