Skip to main content

Part of the book series: Springer Series in Cognitive and Neural Systems ((SSCNS,volume 3))

Abstract

The field of neural modeling uses neuroscientific data and measurements to build computational abstractions that represent the functioning of a neural system. The timing of various neural signals conveys important information about the sensory world, and also about the relationships between activities occurring in different parts of a brain. Both theoretical and experimental advances are required to effectively understand and model such complex interactions within a neural system. This book aims to develop a unified understanding of temporal interactions in neural systems, including their representation, role and function. We present three different research perspectives arising from theoretical, engineering and experimental approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berdyyeva TK, Reynolds JH (2009) The dawning of primate optogenetics. Neuron 62(2):159–160

    Article  PubMed  CAS  Google Scholar 

  2. Cardin JA et al. (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459(7247):663–667

    Article  PubMed  CAS  Google Scholar 

  3. Dave AS, Margoliash D (2000) Song replay during sleep and computational rules for sensorimotor vocal learning. Science 290:812–816

    Article  PubMed  CAS  Google Scholar 

  4. Fries P et al. (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291(5508):1560–1563

    Article  PubMed  CAS  Google Scholar 

  5. Gray CM et al. (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337

    Article  PubMed  CAS  Google Scholar 

  6. Haider B, McCormick DA (2009) Rapid neocortical dynamics: cellular and network mechanisms. Neuron 62(2):171–189

    Article  PubMed  CAS  Google Scholar 

  7. Han X et al. (2009) Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62(2):191–198

    Article  PubMed  CAS  Google Scholar 

  8. Jefferys JGR, Traub RD, Whittington MA (1996) Neuronal networks for induced ‘40 Hz’ rhythms. Trends Neurosci 19:202–208

    Article  PubMed  CAS  Google Scholar 

  9. Joliot M, Ribary U, Llinás R (1994) Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proc Natl Acad Sci USA 91(24):11748–11751

    Article  PubMed  CAS  Google Scholar 

  10. Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer, Berlin

    Book  Google Scholar 

  11. Liu H et al. (2009) Timing, timing, timing: fast decoding of object information from intracranial field potentials in human visual cortex. Neuron 62(2):281–290

    Article  PubMed  CAS  Google Scholar 

  12. Rodriguez E et al. (1999) Perception’s shadow: long-distance synchronization of human brain activity. Nature 397:430–433

    Article  PubMed  CAS  Google Scholar 

  13. von der Malsburg C (1999) The what and why of binding: the modeler’s perspective. Neuron 24:95–104

    Article  PubMed  Google Scholar 

  14. Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265:676–679

    Article  PubMed  CAS  Google Scholar 

  15. Winfree AT (2001) The geometry of biological time, 2nd edn. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Cecchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cecchi, G., Rao, A.R. (2012). Introduction. In: Rao, A., Cecchi, G. (eds) The Relevance of the Time Domain to Neural Network Models. Springer Series in Cognitive and Neural Systems, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0724-9_1

Download citation

Publish with us

Policies and ethics