Skip to main content

Fundamental and Clinical Considerations of the Muscles of the Hip

  • Chapter
  • First Online:
Hip Joint Restoration

Abstract

This chapter will provide an overview of the actions of hip muscles, with a focus on understanding a muscle’s action based on its line-of-force. Discussions will highlight on how the position of the hip at a given time affects the torque and ultimate action of certain hip muscles. Other mechanical aspects of hip muscle function will be discussed, such as how the forces generated by muscle contraction affect the stress on the hip and its periarticular tissues. This chapter should serve as a foundation for physicians and rehabilitation specialists who direct and provide care for patients following hip arthroscopic surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Pelvic tilt is defined as a short-arc (sagittal plane) rotation of the pelvis relative to both femoral heads. The direction of the tilt is named based on the direction of movement of a point on the iliac crest.

  2. 2.

    The longitudinal axis of rotation at the hip is defined as running from femoral head to the center of the knee. Because of the neck-shaft angle and the slight forward bowing of the femur, much of this axis runs slightly posterior to the shaft of the femur

References

  1. Neumann DA. Kinesiology of the hip: a focus on muscular actions. J Orthop Sports Phys Ther. 2010;40:82–94.

    Article  PubMed  Google Scholar 

  2. Dostal WF, Andrews JG. A three-dimensional biomechanical model of hip musculature. J Biomech. 1981;14:803–12.

    Article  CAS  PubMed  Google Scholar 

  3. Dostal WF, Soderberg GL, Andrews JG. Actions of hip muscles. Phys Ther. 1986;66:351–61.

    Article  CAS  PubMed  Google Scholar 

  4. Brand RA, Crowninshield RD, Wittstock CE, Pedersen DR, Clark CR, van Krieken FM. A model of lower extremity muscular anatomy. J Biomech Eng. 1982;104:304–10.

    Article  CAS  PubMed  Google Scholar 

  5. Hoy MG, Zajac FE, Gordon ME. A musculoskeletal model of the human lower extremity: the effect of muscle, tendon, and moment arm on the moment-angle relationship of musculotendon actuators at the hip, knee, and ankle. J Biomech. 1990;23:157–69.

    Article  CAS  PubMed  Google Scholar 

  6. Pressel T, Lengsfeld M. Functions of hip joint muscles. Med Eng Phys. 1998;20(1):50–6.

    Article  CAS  PubMed  Google Scholar 

  7. Neumann DA. Kinesiology of the musculoskeletal system: foundations for physical rehabilitation. 2nd ed. St Louis: Elsevier; 2010.

    Google Scholar 

  8. Correa TA, Crossley KM, Kim HJ, Pandy MG. Contributions of individual muscles to hip joint contact force in normal walking. J Biomech. 2010;43(8):1618–22.

    Article  PubMed  Google Scholar 

  9. Park RJ, Tsao H, Cresswell AG, Hodges PW. Differential activity of regions of the psoas major and quadratus lumborum during submaximal isometric trunk efforts. J Orthop Res. 2012;30(2):311–8.

    Article  PubMed  Google Scholar 

  10. Hu H, Meijer OG, van Dieen JH, Hodges PW, Bruijn SM, Strijers RL, et al. Is the psoas a hip flexor in the active straight leg raise? Eur Spine J. 2011;20(5):759–65.

    Article  PubMed  Google Scholar 

  11. Blemker SS, Delp SL. Three-dimensional representation of complex muscle architectures and geometries. Ann Biomed Eng. 2005;33:661–73.

    Article  PubMed  Google Scholar 

  12. Neumann DA, Garceau LR. A proposed novel function of the psoas minor revealed through cadaver dissection. Clin Anat. 2015;28(2):243–52. doi:10.1002/ca.22467.

    Article  PubMed  Google Scholar 

  13. Contreras ME, Dani WS, Endges WK, De Araujo LC, Berral FJ. Arthroscopic treatment of the snapping iliopsoas tendon through the central compartment of the hip: a pilot study. J Bone Joint Surg Br. 2010;92(6):777–80.

    Article  CAS  PubMed  Google Scholar 

  14. Babst D, Steppacher SD, Ganz R, Siebenrock KA, Tannast M. The iliocapsularis muscle: an important stabilizer in the dysplastic hip. Clin Orthop Relat Res. 2011;469(6):1728–34.

    Article  CAS  PubMed  Google Scholar 

  15. Ward WT, Fleisch ID, Ganz R. Anatomy of the iliocapsularis muscle. Relevance to surgery of the hip. Clin Orthop Relat Res. 2000;374:278–85.

    Article  Google Scholar 

  16. Tatu L, Parratte B, Vuillier F, Diop M, Monnier G. Descriptive anatomy of the femoral portion of the iliopsoas muscle. Anatomical basis of anterior snapping of the hip. Surg Radiol Anat. 2001;23(6):371–4.

    Article  CAS  PubMed  Google Scholar 

  17. Blomberg JR, Zellner BS, Keene JS. Cross-sectional analysis of iliopsoas muscle-tendon units at the sites of arthroscopic tenotomies: an anatomic study. Am J Sports Med. 2011;39(Suppl):58S–63.

    Article  PubMed  Google Scholar 

  18. Dewberry MJ, Bohannon RW, Tiberio D, Murray R, Zannotti CM. Pelvic and femoral contributions to bilateral hip flexion by subjects suspended from a bar. Clin Biomech. 2003;18:494–9.

    Article  Google Scholar 

  19. Hodges PW, Eriksson AE, Shirley D, Gandevia SC. Intra-abdominal pressure increases stiffness of the lumbar spine. J Biomech. 2005;38:1873–80.

    Article  PubMed  Google Scholar 

  20. Urquhart DM, Hodges PW, Story IH. Postural activity of the abdominal muscles varies between regions of these muscles and between body positions. Gait Posture. 2005;22:295–301.

    Article  PubMed  Google Scholar 

  21. Cahalan TD, Johnson ME, Liu S, Chao EY. Quantitative measurements of hip strength in different age groups. Clin Orthop Relat Res. 1989;246:136–45.

    Google Scholar 

  22. Magalhaes E, Fukuda TY, Sacramento SN, Forgas A, Cohen M, Abdalla RJ. A comparison of hip strength between sedentary females with and without patellofemoral pain syndrome. J Orthop Sports Phys Ther. 2010;40(10):641–7.

    Article  PubMed  Google Scholar 

  23. Winter DA. Biomechanics and motor control of human movement. Hoboken: Wiley; 2005.

    Google Scholar 

  24. Arnold AS, Delp SL. Rotational moment arms of the medial hamstrings and adductors vary with femoral geometry and limb position: implications for the treatment of internally rotated gait. J Biomech. 2001;34:437–47.

    Article  CAS  PubMed  Google Scholar 

  25. Samuel D, Rowe PJ. Effect of ageing on isometric strength through joint range at knee and hip joints in three age groups of older adults. Gerontology. 2009;55(6):621–9.

    Article  PubMed  Google Scholar 

  26. Dixon MC, Scott RD, Schai PA, Stamos V. A simple capsulorrhaphy in a posterior approach for total hip arthroplasty. J Arthroplasty. 2004;19:373–6.

    Article  PubMed  Google Scholar 

  27. Khan RJ, Yao F, Li M, Nivbrant B, Wood D. Capsular-enhanced repair of the short external rotators after total hip arthroplasty. J Arthroplasty. 2007;22:840–3.

    Article  PubMed  Google Scholar 

  28. Mihalko WM, Whiteside LA. Hip mechanics after posterior structure repair in total hip arthroplasty. Clin Orthop Relat Res. 2004;(420):194–8.

    Google Scholar 

  29. White RE, Jr, Forness TJ, Allman JK, Junick DW. Effect of posterior capsular repair on early dislocation in primary total hip replacement. Clin Orthop Relat Res. 2001;(393):163–7.

    Google Scholar 

  30. Pine J, Binns M, Wright P, Soames R. Piriformis and obturator internus morphology: a cadaveric study. Clin Anat. 2011;24(1):70–6.

    Article  PubMed  Google Scholar 

  31. Solomon LB, Lee YC, Callary SA, Beck M, Howie DW. Anatomy of piriformis, obturator internus and obturator externus: implications for the posterior surgical approach to the hip. J Bone Joint Surg Br. 2010;92(9):1317–24.

    Article  CAS  PubMed  Google Scholar 

  32. Delp SL, Hess WE, Hungerford DS, Jones LC. Variation of rotation moment arms with hip flexion. J Biomech. 1999;32:493–501.

    Article  CAS  PubMed  Google Scholar 

  33. Kendall FP, McCreary AK, Provance PG. Muscles: testing and function. 4th ed. Baltimore: Williams & Wilkins; 1993.

    Google Scholar 

  34. Stahelin T, Drittenbass L, Hersche O et al. Failure of capsular enhanced short external rotator repair after total hip replacement. Clin Orthop Relat Res. 2004;(420):199–204.

    Google Scholar 

  35. Mansour JM, Pereira JM. Quantitative functional anatomy of the lower limb with application to human gait. J Biomech. 1987;20:51–8.

    Article  CAS  PubMed  Google Scholar 

  36. Jarvis DK. Relative strength of the hip internal rotator muscles. Phys Ther Rev. 1952;32:500–3.

    CAS  PubMed  Google Scholar 

  37. Johnson S, Hoffman M. Isometric hip-rotator torque production at varying degrees of hip flexion. J Sport Rehab. 2010;19(1):12–20.

    Article  Google Scholar 

  38. Lindsay DM, Maitland ME, Lowe RC. Comparison of isokinetic internal and external hip rotation torques using different testing positions. J Orthop Sports Phys Ther. 1992;16:43–50.

    Article  CAS  PubMed  Google Scholar 

  39. Hicks JL, Schwartz MH, Arnold AS, Delp SL. Crouched postures reduce the capacity of muscles to extend the hip and knee during the single-limb stance phase of gait. J Biomech. 2008;41:960–7.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Arnold AS, Asakawa DJ, Delp SL. Do the hamstrings and adductors contribute to excessive internal rotation of the hip in persons with cerebral palsy? Gait Posture. 2000;11:181–90.

    Article  CAS  PubMed  Google Scholar 

  41. Arnold AS, Anderson FC, Pandy MG, Delp SL. Muscular contributions to hip and knee extension during the single limb stance phase of normal gait: a framework for investigating the causes of crouch gait. J Biomech. 2005;38:2181–9.

    Article  PubMed  Google Scholar 

  42. Baldon RM, Lobato DF, Carvalho LP, Santiago PR, Benze BG, Serrao FV. Relationship between eccentric hip torque and lower-limb kinematics: gender differences. J App Biomech. 2011;27(3):223–32.

    Article  Google Scholar 

  43. Fukuda TY, Melo WP, Zaffalon BM, Rossetto FM, Magalhaes E, Bryk FF, et al. Hip posterolateral musculature strengthening in sedentary women with patellofemoral pain syndrome: a randomized controlled clinical trial with 1-year follow-up. J Orthop Sports Phys Ther. 2012;42(10):823–30.

    Article  PubMed  Google Scholar 

  44. Lawrence III RK, Kernozek TW, Miller EJ, Torry MR, Reuteman P. Influences of hip external rotation strength on knee mechanics during single-leg drop landings in females. Clin Biomech. 2008;23(6):806–13.

    Article  Google Scholar 

  45. Noehren B, Pohl MB, Sanchez Z, Cunningham T, Lattermann C. Proximal and distal kinematics in female runners with patellofemoral pain. Clin Biomech. 2012;27(4):366–71.

    Article  Google Scholar 

  46. Souza RB, Powers CM. Differences in hip kinematics, muscle strength, and muscle activation between subjects with and without patellofemoral pain. J Orthop Sports Phys Ther. 2009;39(1):12–9.

    Article  PubMed  Google Scholar 

  47. Willson JD, Davis IS. Lower extremity mechanics of females with and without patellofemoral pain across activities with progressively greater task demands. Clin Biomech. 2008;23:203–11.

    Article  Google Scholar 

  48. Powers CM, Ward SR, Fredericson M, Guillet M, Shellock FG. Patellofemoral kinematics during weight-bearing and non-weight-bearing knee extension in persons with lateral subluxation of the patella: a preliminary study. J Orthop Sports Phys Ther. 2003;33(11):677–85.

    Article  PubMed  Google Scholar 

  49. Murray MP, Sepic SB. Maximum isometric torque of hip abductor and adductor muscles. Phys Ther. 1968;48(12):1327–35.

    CAS  PubMed  Google Scholar 

  50. Thorborg K, Serner A, Petersen J, Madsen TM, Magnusson P, Holmich P. Hip adduction and abduction strength profiles in elite soccer players: implications for clinical evaluation of hip adductor muscle recovery after injury. Am J Sports Med. 2011;39(1):121–6.

    Article  PubMed  Google Scholar 

  51. Brophy RH, Backus S, Kraszewski AP, Steele BC, Ma Y, Osei D, et al. Differences between sexes in lower extremity alignment and muscle activation during soccer kick. J Bone Joint Surg Am. 2010;92(11):2050–8.

    Article  PubMed  Google Scholar 

  52. Nemeth G, Ohlsen H. Moment arms of the hip abductor and adductor muscles measured in vivo by computed tomography. Clin Biomech. 1989;4:133–6.

    Article  CAS  Google Scholar 

  53. Arnold AS, Salinas S, Asakawa DJ, et al. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput Aided Surg. 2000;5:108–19.

    Article  CAS  PubMed  Google Scholar 

  54. Lengsfeld M, Pressel T, Stammberger U. Lengths and lever arms of hip joint muscles: geometrical analyses using a human multibody model. Gait Posture. 1997;6:18–26.

    Article  Google Scholar 

  55. Clark JM, Haynor DR. Anatomy of the abductor muscles of the hip as studied by computed tomography. J Bone Joint Surg Am. 1987;69:1021–31.

    Article  CAS  PubMed  Google Scholar 

  56. Hoffmann A, Pfirrmann CWA. The hip abductors at MI Imaging. Eur J Radio. 2010. doi:10.1016/j.ejrad.2010.03.002.

    Google Scholar 

  57. Soderberg GL, Dostal WF. Electromyographic study of three parts of the gluteus medius muscle during functional activities. Phys Ther. 1978;58:691–6.

    CAS  PubMed  Google Scholar 

  58. Beck M, Sledge JB, Gautier E, Dora CF, Ganz R. The anatomy and function of the gluteus minimus muscle. J Bone Joint Surg Br. 2000;82:358–63.

    Article  CAS  PubMed  Google Scholar 

  59. Walters J, Solomons M, Davies J. Gluteus minimus: observations on its insertion. J Anat. 2001;198:239–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Neumann DA. Biomechanical analysis of selected principles of hip joint protection. Arthritis Care Res. 1989;2:146–55.

    Article  CAS  PubMed  Google Scholar 

  61. Hurwitz DE, Foucher KC, Andriacchi TP. A new parametric approach for modeling hip forces during gait. J Biomech. 2003;36:113–9.

    Article  PubMed  Google Scholar 

  62. Kurrat HJ, Oberlander W. The thickness of the cartilage in the hip joint. J Anat. 1978;126(1):145–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Debevec H, Pedersen DR, Iglic A, Daniel M. One-legged stance as a representative static body position for calculation of hip contact stress distribution in clinical studies. J Appl Biomech. 2010;26(4):522–5.

    Article  PubMed  Google Scholar 

  64. Neumann DA, Soderberg GL, Cook TM. Comparison of maximal isometric hip torques between hip sides. Phys Ther. 1988;68:496–502.

    Article  CAS  PubMed  Google Scholar 

  65. Inman VT. Functional aspects of the abductor muscles of the hip. J Bone Joint Surg Am. 1947;29:607–19.

    CAS  PubMed  Google Scholar 

  66. Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech. 1993;26:969–90.

    Article  CAS  PubMed  Google Scholar 

  67. Fraysse F, Dumas R, Cheze L, Wang X. Comparison of global and joint-to-joint methods for estimating the hip joint load and the muscle forces during walking. J Biomech. 2009;42(14):2357–62.

    Article  CAS  PubMed  Google Scholar 

  68. Hodge WA, Carlson KL, Fijan RS, Burgess RG, Riley PO, Harris WH, et al. Contact pressures from an instrumented hip endoprosthesis. J Bone Joint Surg Am. 1989;71:1378–86.

    Article  CAS  PubMed  Google Scholar 

  69. Stansfield BW, Nicol AC. Hip joint contact forces in normal subjects and subjects with total hip prostheses: walking and stair and ramp negotiation. Clin Biomech. 2002;17:130–9.

    Article  CAS  Google Scholar 

  70. Harris MD, Anderson AE, Henak CR, Ellis BJ, Peters CL, Weiss JA. Finite element prediction of cartilage contact stresses in normal human hips. J Orthop Res. 2012;30(7):1133–9.

    Article  PubMed  Google Scholar 

  71. Krebs DE, Elbaum L, Riley PO, Hodge WA. Exercise and gait effects on in vivo hip contact pressures. Phys Ther. 1991;71:301–9.

    Article  CAS  PubMed  Google Scholar 

  72. Neumann DA. An electromyographic study of the hip abductor muscles as subjects with a hip prosthesis walked with different methods of using a cane and carrying a load. Phys Ther. 1999;79:1163–73.

    CAS  PubMed  Google Scholar 

  73. Neumann DA. Hip abductor muscle activity in persons with a hip prosthesis while carrying loads in one hand. Phys Ther. 1996;76:1320–30.

    Article  CAS  PubMed  Google Scholar 

  74. McGibbon CA, Krebs DE, Mann RW. In vivo hip pressures during cane and load-carrying gait. Arthritis Care Res. 1997;10(5):300–7.

    Article  CAS  PubMed  Google Scholar 

  75. Neumann DA. Hip abductor muscle activity as subjects with hip prostheses walk with different methods of using a cane. Phys Ther. 1998;78:490–501.

    Article  CAS  PubMed  Google Scholar 

  76. Ajemian S, Thon D, Clare P, Kaul L, Zernicke RF, Loitz-Ramage B. Cane-assisted gait biomechanics and electromyography after total hip arthroplasty. Arch Phys Med Rehabil. 2004;85:1966–71.

    Article  PubMed  Google Scholar 

  77. Claiborne TL, Armstrong CW, Gandhi V, Pincivero DM. Relationship between hip and knee strength and knee valgus during a single leg squat. J Appl Biomech. 2006;22:41–50.

    Article  PubMed  Google Scholar 

  78. Ford KR, Myer GD, Smith RL, Vianello RM, Seiwert SL, Hewett TE. A comparison of dynamic coronal plane excursion between matched male and female athletes when performing single leg landings. Clin Biomech. 2006;21:33–40.

    Article  Google Scholar 

  79. Geiser CF, O’Connor KM, Earl JE. The effects of isolated hip abductor fatigue on frontal plane knee mechanics. Med Sci Sports Exerc. 2010;42:535–45.

    Article  PubMed  Google Scholar 

  80. Prins MR, van der Wurff P. Females with patellofemoral pain syndrome have weak hip muscles: a systematic review. Aust J Physiother. 2009;55:9–15.

    Article  PubMed  Google Scholar 

  81. Alentorn-Geli E, Myer GD, Silvers HJ, Samitier G, Romero D, Lazaro-Haro C, et al. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: mechanisms of injury and underlying risk factors. Knee Surg Sports Traumatol Arthrosc. 2009;17:705–29.

    Article  PubMed  Google Scholar 

  82. Bolgla LA, Malone TR, Umberger BR, Uhl TL. Hip strength and hip and knee kinematics during stair descent in females with and without patellofemoral pain syndrome. J Orthop Sports Phys Ther. 2008;38:12–8.

    Article  PubMed  Google Scholar 

  83. Hewett TE, Myer GD, Ford KR, Heidt Jr RS, Colosimo AJ, McLean SG, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33:492–501.

    Article  PubMed  Google Scholar 

  84. Philippon MJ, Decker MJ, Giphart JE, Torry MR, Wahoff MS, LaPrade RF. Rehabilitation exercise progression for the gluteus medius muscle with consideration for iliopsoas tendinitis: an in vivo electromyography study. Am J Sports Med. 2011;39(8):1777–85.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The author wishes to thank Paul Andrew, Lauren Miller, Luke Garceau, and Martha Jerme for their careful review or other technical or research assistance in the preparation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald Anthony Neumann PT, PhD, FAPTA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Neumann, D.A. (2017). Fundamental and Clinical Considerations of the Muscles of the Hip. In: McCarthy, J., Noble, P., Villar, R. (eds) Hip Joint Restoration. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0694-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0694-5_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0693-8

  • Online ISBN: 978-1-4614-0694-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics