Application of Optical Coherence Tomography in Neuro-Ophthalmic Disorders



Optical coherence tomography (OCT) is an evolving technology, developed in the 1990s to provide noninvasive imaging of tissues. Using low-coherence light and ultra-short laser pulses, it generates cross-sectional images of biologic structures with great detail. OCT has become valuable in medicine, especially in ophthalmology. This technology allows the detection of early or subtle pathology and provides a critical tool in the diagnosis and management of ocular diseases. OCT is routinely used in the fields of retina and glaucoma, and now has become more popular in neuro-ophthalmology. In this chapter the role of OCT technology, its limitations, and use in the differentiation of optic nerve disorders from retinal disorders will be discussed. Its potential role in the diagnosis and monitoring of multiple sclerosis, Alzheimer’s disease, and Parkinson’s disease will also be highlighted.


Optical Coherence Tomography Retinal Nerve Fiber Layer Optic Neuritis Retinal Nerve Fiber Layer Thickness Spectral Domain Optical Coherence Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.PubMedCrossRefGoogle Scholar
  2. 2.
    Fujimoto JG, Brezinski ME, Tearney GJ, et al. Optical biopsy and imaging using optical coherence tomography. Nat Med. 1995;9:970–2.CrossRefGoogle Scholar
  3. 3.
    Yaqoob Z, Wu J, Yang C. Spectral domain optical coherence tomography: a better OCT imaging strategy. Biotechniques. 2005;9(6 Suppl):S6–13.CrossRefGoogle Scholar
  4. 4.
    Watson GM, Keltner JL, Chin EK, Harvey D, Nguyen A, Park SS. Comparison of retinal nerve fiber layer and central macular thickness measurements among five different optical coherence tomography instruments in patients with multiple sclerosis and optic neuritis. J Neuroophthalmol. 2011;31:110–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Buchser NM, Wollstein G, Ishikawa H, Bilonick RA, Ling Y, Folio LS, et al. Comparison of retinal nerve fiber layerthickness measurement bias and imprecision across three spectral-domain opticalcoherence tomography devices. Investig Ophthalmol Vis Sci. 2012;53(7):3742–7.CrossRefGoogle Scholar
  6. 6.
    Hedges 3rd TR, Vuong LN, Gonzalez-Garcia AO, Mendoza-Santiesteban CE, Amaro-Quierza ML. Subretinal fluid from anterior ischemic optic neuropathy demonstrated by optical coherence tomography. Arch Ophthalmol. 2008;126(6):812–5.PubMedCrossRefGoogle Scholar
  7. 7.
    Hoye 3rd VJ, Berrocal AM, Hedges 3rd TR, Amaro-Quireza ML. Optical coherence tomography demonstrates subretinal macular edema from papilledema. Arch Ophthalmol. 2001;119(9):1287–90.PubMedCrossRefGoogle Scholar
  8. 8.
    Savini G, Barboni P, Carbonelli M, Carelli V, Sadun AA. Optical coherencetomography for optic disc edema. Arch Ophthalmol. 2011;129(9):1245–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Moura FC, Monteiro ML. Evaluation of retinal nerve fiber layer thickness measurements using optical coherence tomography in patients with tobacco-alcohol-induced toxic optic neuropathy. Indian J Ophthalmol. 2010;58(2):143–6.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Johnson LN, Diehl ML, Hamm CW, Sommerville DN, Petroski GF. Differentiating optic disc edema from optic nerve head drusen on optical coherence tomography. Arch Ophthalmol. 2009;127:45–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Kupersmith MJ, Sibony P, Mandel G, Durbin M, Kardon RH. Optical coherence tomography of the swollen optic nerve head: deformation of the peripapillaryretinal pigment epithelium layer in papilledema. Investig Ophthalmol Vis Sci. 2011;52(9):6558–64.CrossRefGoogle Scholar
  12. 12.
    Afshar AR, Fernandes JK, Patel RD, Ksiazek SM, Sheth VS, Reder AT, et al. Cystoid macular edema associated with fingolimod use for multiple sclerosis. JAMA Ophthalmol. 2013;131(1):103–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Rodrigues IA. Acute and chronic spectral domain optical coherence tomography features of branch retinal artery occlusion. BMJ Case Rep. 2013;pii:bcr2013009007.Google Scholar
  14. 14.
    Costello F, Hodge W, Pan YI, Eggenberger E, Coupland S, Kardon RH. Tracking retinal nerve fiber layer loss after optic neuritis: a prospective study using optical coherence tomography. Mult Scler. 2008;14(7):893–905.PubMedCrossRefGoogle Scholar
  15. 15.
    Costello FE, Klistorner A, Kardon R. Optical coherence tomography in the diagnosis and management of optic neuritis and multiple sclerosis. Ophthalmic Surg Lasers Imaging. 2011;42(Suppl):S28–40.CrossRefGoogle Scholar
  16. 16.
    Talman LS, Bisker ER, Sackel DJ, Long Jr DA, Galetta KM, Ratchford JN, et al. Longitudinal study of vision and retinal nerve fiberlayer thickness in multiple sclerosis. Ann Neurol. 2010;67(6):749–60.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Fernandes DB, Raza AS, Nogueira RG, Wang D, Callegaro D, Hood DC, et al. Evaluation of inner retinal layers in patients with multiple sclerosis orneuromyelitisoptica using optical coherence tomography. Ophthalmology. 2013;120(2):387–94.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Costello F, Hodge W, Pan YI, Eggenberger E, Freedman MS. Using retinal architecture to help characterize multiple sclerosis patients. Can J Ophthalmol. 2010;45(5):520–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Saidha S, Syc SB, Ibrahim MA, Eckstein C, Warner CV, Farrell SK, et al. Primary retinal pathology in multiple sclerosis asdetected by optical coherence tomography. Brain. 2011;134(Pt 2):518–33.PubMedCrossRefGoogle Scholar
  20. 20.
    Gelfand JM, Nolan R, Schwartz DM, Graves J, Green AJ. Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain. 2012;135(Pt 6):1786–93.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Gelfand JM, Cree BA, Nolan R, Arnow S, Green AJ. Microcystic inner nuclear layer abnormalities and neuromyelitisoptica. JAMA Neurol. 2013;70(5):629–33.PubMedCrossRefGoogle Scholar
  22. 22.
    Abegg M, Zinkernagel M, Wolf S. Microcystic macular degeneration from optic neuropathy. Brain. 2012;135(Pt 12):e225.PubMedCrossRefGoogle Scholar
  23. 23.
    Wolff B, Basdekidou C, Vasseur V, Mauget-Faÿsse M, Sahel JA, Vignal C. Retinal inner nuclear layer microcystic changes in optic nerve atrophy: a novel spectral-domain OCT finding. Retina. 2013;33:2133–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Marziani E, Pomati S, Ramolfo P, Cigada M, Giani A, Mariani C, et al. Evaluation of retinal nerve fiber layer and ganglion cell layer thickness in Alzheimer’s disease using spectral-domain optical coherence tomography. Investig Ophthalmol Vis Sci. 2013;54(9):5953–8.CrossRefGoogle Scholar
  25. 25.
    Moreno-Ramos T, Benito-León J, Villarejo A, Bermejo-Pareja F. Retinal nerve fiber layer thinning in dementia associated with Parkinson’s disease, dementia with lewy bodies, and Alzheimer’s disease. J Alzheimers Dis. 2013;34(3):659–64.PubMedGoogle Scholar
  26. 26.
    Spund B, Ding Y, Liu T, Selesnick I, Glazman S, Shrier EM, et al. Remodeling of the fovea in Parkinson disease. J Neural Transm. 2013;120(5):745–53.PubMedCrossRefGoogle Scholar
  27. 27.
    Bodis-Wollner I. Foveal vision is impaired in Parkinson’s disease. Parkinsonism Relat Disord. 2013;19(1):1–14.PubMedCrossRefGoogle Scholar
  28. 28.
    Jaffe MJ, Bruno G, Campbell G, Lavine RA, Karson CN, Weinberger DR. Ganzfeldelectroretinographic findings in parkinsonism: untreated patients and the effect of levodopa intravenous infusion. J Neurol Neurosurg Psychiatry. 1987;50(7):847–52.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Bodis-Wollner I, Yahr MD. Measurements of visual evoked potentials in Parkinson’s disease. Brain. 1978;101(4):661–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Gawel MJ, Vincent S, Clifford RF. Visual evoked potentials in patients with Parkinson disease. J Neurol Neurosurg Psychiatry. 1981;44:227–32.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Kirbas S, Turkyilmaz K, Tufekci A, Durmus M. Retinal nerve fiber layer thickness in Parkinson disease. J Neuroophthalmol. 2013;33(1):62–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Moschos MM, Tagaris G, Markopoulos I, Margetis I, Tsapakis S, Kanakis M, et al. Morphologic changes and functional retinal impairment in patients with Parkinson disease without visual loss. Eur J Ophthalmol. 2011;21(1):24–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Hajee ME et al. Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol. 2009;127:737–41.PubMedCrossRefGoogle Scholar
  34. 34.
    Wu Z, Huang J, Dustin L, Sadda SR. Signal strength is an important determinant of accuracy of nerve fiber layer thickness measurement by optical coherencetomography. J Glaucoma. 2009;18(3):213–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Hwang YH, Yoo C, Kim YY. Myopic optic disc tilt and the characteristics ofperipapillary retinal nerve fiber layer thickness measured by spectral-domainoptical coherence tomography. J Glaucoma. 2012;21(4):260–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Cettomai D, Pulicken M, Gordon-Lipkin E, Salter A, Frohman TC, Conger A, et al. Reproducibility of optical coherence tomography in multiple sclerosis. Arch Neurol. 2008;65(9):1218–22.PubMedCrossRefGoogle Scholar
  37. 37.
    Rebolleda G, García-García A, Won Kim HR, Muñoz-Negrete FJ. Comparison ofretinal nerve fiber layer measured by time domain and spectral domain opticalcoherence tomography in optic neuritis. Eye. 2011;25(2):233–8.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Knight OJ, Chang RT, Feuer WJ, Budenz DL. Comparison of retinal nerve fiber layer measurements using time domain and spectral domain optical coherenttomography. Ophthalmology. 2009;116(7):1271–7.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Lange AP, Sadjadi R, Saeedi J, Lindley J, Costello F, Traboulsee AL. Time-domain and spectral-domain optical coherence tomography of retinal nervefiber layer in MS patients and healthy controls. J Ophthalmol. 2012;2012:564627.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Bock M, Brandt AU, Dörr J, Pfueller CF, Ohlraun S, Zipp F, et al. Time domain and spectral domain optical coherence tomography in multiple sclerosis: acomparative cross-sectional study. Mult Scler. 2010;16(7):893–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of OphthalmologyNew England Eye Center-Tufts Medical CenterBostonUSA
  2. 2.Tufts Medical CenterBostonUSA
  3. 3.Lahey Clinic Ophthalmology DepartmentBurlingtonUSA
  4. 4.Department of OphthalmologyLahey Clinic Medical CenterMashpeeUSA
  5. 5.Department of OphthalmologyTufts Medical CenterBostonUSA

Personalised recommendations