Approach to the Diagnosis and Differentiation of Glaucomatous and Nonglaucomatous Optic Neuropathies



Optic neuropathy denotes degeneration of the retinal ganglion cells with functional and structural impairment of the optic nerve. Functional damage of the optic nerve can be evaluated by checking visual acuity, color vision, pupillary function, and perimetric visual fields. Characteristic optic nerve head changes are usually evident in glaucomatous and nonglaucomatous optic neuropathies, and the loss of optic nerve fiber bundles can be confirmed and quantified with optical coherence tomography (OCT). Although an optic neuropathy can often be diagnosed with careful history taking and clinical examination, differentiating glaucomatous from nonglaucomatous optic neuropathies may not be straightforward. This chapter summarizes and highlights the important features of history taking, clinical examination, and investigation that are required to differentiate between glaucomatous and nonglaucomatous optic neuropathies. With increasing popularity of the use of spectral-domain OCT for the evaluation of glaucomatous and nonglaucomatous optic neuropathies, an update on its application to detect and monitor optic nerve degeneration is also discussed.


Optical Coherence Tomography Retinal Nerve Fiber Layer Optic Neuropathy Retinal Nerve Fiber Layer Thickness Retinal Nerve Fiber Layer Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



C.L.: Speaker honorarium—Carl Zeiss Meditec, Heidelberg Engineering, Topcon; Research support—Carl Zeiss Meditec, Optovue, Tomey.


  1. 1.
    Beck RW, Cleary PA, Anderson Jr MM, et al. A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. The Optic Neuritis Study Group. N Engl J Med. 1992;326:581–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Greenfield DS, Siatkowski RM, Glaser JS, et al. The cupped disc. Who needs neuroimaging? Ophthalmology. 1998;105:1866–74.PubMedCrossRefGoogle Scholar
  3. 3.
    Hayreh SS, Zimmerman MB. Nonarteritic anterior ischemic optic neuropathy: natural history of visual outcome. Ophthalmology. 2008;115:298–305.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Optic Neuritis Study Group. Visual function 15 years after optic neuritis: a final follow-up report from the optic neuritis treatment trial. Ophthalmology. 2008;115:1079–82.CrossRefGoogle Scholar
  5. 5.
    Berninger TA, Jaeger W, Krastel H. Electrophysiology and colourperimetry in dominant infantile optic atrophy. Br J Ophthalmol. 1991;75:49–52.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Lee EJ, Kim SJ, Choung HK, et al. Incidence and clinical features of ethambutol-induced optic neuropathy in Korea. J Neuroophthalmol. 2008;28:269–77.PubMedCrossRefGoogle Scholar
  7. 7.
    Chang DS, Xu L, Boland MV, Friedman DS. Accuracy of pupil assessment for the detection of glaucoma: a systematic review and meta-analysis. Ophthalmology. 2013;120:2217–25.PubMedCrossRefGoogle Scholar
  8. 8.
    Weinreb RN, Brandt JD, Garway-heath D, editors. Intraocular pressure. Consensus series 4. The Hague, The Netherlands: Kugler Publications; 2007. p. 17–58.Google Scholar
  9. 9.
    Park SJ, Ang GS, Nicholas S, et al. The effect of thin, thick, and normal corneas on Goldmann intraocular pressure measurements and correction formulae in individual eyes. Ophthalmology. 2012;119:443–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Kaufmann C, Bachmann LM, Thiel MA. Intraocular pressure measurements using dynamic contour tonometry after laser in situ keratomileusis. Investig Ophthalmol Vis Sci. 2003;44:3790–4.CrossRefGoogle Scholar
  11. 11.
    Kniestedt C, Nee M, Stamper RL. Dynamic contour tonometry: a comparative study on human cadaver eyes. Arch Ophthalmol. 2004;122:1287–93.PubMedCrossRefGoogle Scholar
  12. 12.
    Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol. 2002;86:238–42.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Trobe JD, Glaser JS, Cassady J, et al. Nonglaucomatous excavation of the optic disc. Arch Ophthalmol. 1980;98:1046–50.PubMedCrossRefGoogle Scholar
  14. 14.
    Quigley H, Anderson DR. Cupping of the optic disc in ischemic optic neuropathy. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol. 1977;83:755–62.PubMedGoogle Scholar
  15. 15.
    Piette SD, Sergott RC. Pathological optic-disc cupping. Curr Opin Ophthalmol. 2006;17:1–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Ahmed II, Feldman F, Kucharczyk W, Trope GE. Neuroradiologic screening in normal-pressure glaucoma: study results and literature review. J Glaucoma. 2002;11:279–86.PubMedCrossRefGoogle Scholar
  17. 17.
    Hood DC, Chen JY, Yang EB, et al. The role of the multifocal visual evoked potential (mfVEP) latency in understanding optic nerve and retinal diseases. Trans Am Ophthalmol Soc. 2006;104:71–7.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Bach M, Poloschek CM. Electrophysiology and glaucoma: current status and future challenges. Cell Tissue Res. 2013;353:287–96.Google Scholar
  19. 19.
    Wang J, Cheng H, Hu YS, et al. The photopic negative response of the flash electroretinogram in multiple sclerosis. Investig Ophthalmol Vis Sci. 2012;53:1315–23.CrossRefGoogle Scholar
  20. 20.
    Kiss S, Damico FM, Young LH. Ocular manifestations and treatment of syphilis. Semin Ophthalmol. 2005;20:161–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Schuman JS, Pedut-Kloizman T, Hertzmark E, et al. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology. 1996;103:1889–98.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Leung CK, Cheung CY, Weinreb RN, Qiu Q, Liu S, Li H, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology. 2009;116:1257–63.PubMedCrossRefGoogle Scholar
  23. 23.
    Leung CK, Lam S, Weinreb RN, Liu S, Ye C, Liu N, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography – analysis of the RNFL Map for glaucoma detection. Ophthalmology. 2010;117:1684–91.PubMedCrossRefGoogle Scholar
  24. 24.
    Cheung CY, Leung CK, Lin D, Pang CP, Lam DS. Relationship between retinal nerve fiber layer measurement and signal strength in optical coherence tomography. Ophthalmology. 2008;115:1347–51.PubMedCrossRefGoogle Scholar
  25. 25.
    Cheung CY, Chan N, Leung CK. Retinal nerve fiber layer imaging with spectral‐domain optical coherence tomography – Effect of signal strength on analysis of the RNFL map. Asia-Pac J Ophthalmol. 2012;1:19–23.CrossRefGoogle Scholar
  26. 26.
    Leung CK, Choi N, Weinreb RN, Liu S, Ye C, Lai G, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography – pattern of RNFL defects in Glaucoma. Ophthalmology. 2010;117:2337–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Leung CK, Yu M, Weinreb RN, Lai G, Xu G, Lam DS. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: patterns of RNFL progression. Ophthalmology. 2012;119:1858–66.PubMedCrossRefGoogle Scholar
  28. 28.
    Medeiros FA, Zangwill LM, Alencar LM, et al. Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. Investig Ophthalmol Vis Sci. 2009;50:5741–8.CrossRefGoogle Scholar
  29. 29.
    Leung CK, Cheung CY, Weinreb RN, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. Investig Ophthalmol Vis Sci. 2010;51:217–22.CrossRefGoogle Scholar
  30. 30.
    Leung CK, Liu S, Weinreb RN, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a prospective analysis with neuroretinal rim and visual field progression. Ophthalmology. 2011;118:1551–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Lee EJ, Kim TW, Weinreb RN, et al. Trend-based analysis of retinal nerve fiber layer thickness measured by optical coherence tomography in eyes with localized nerve fiber layer defects. Investig Ophthalmol Vis Sci. 2011;52:1138–44.CrossRefGoogle Scholar
  32. 32.
    Leung CK, Chiu V, Weinreb RN, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between spectral-domain and time-domain optical coherence tomography. Ophthalmology. 2011;118:1558–62.PubMedCrossRefGoogle Scholar
  33. 33.
    Grewal DS, Sehi M, Paauw JD, Greenfield DS. Advanced Imaging in Glaucoma Study Group. detection of progressive retinal nerve fiber layer thickness loss with optical coherence tomography using 4 criteria for functional progression. J Glaucoma. 2012;21:214–20.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Chan CK, Miller NR. Peripapillary nerve fiber layer thickness measured by optical coherence tomography in patients with no light perception from long-standing nonglaucomatous optic neuropathies. J Neuroophthalmol. 2007;27:176–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Leung CK, Yu M, Weinreb RN, Ye C, Liu S, Lai G, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a prospective analysis of age-related loss. Ophthalmology. 2012;119:731–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Leung CK, Yu M, Weinreb RN, Mak HK, Lai G, Ye C, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: interpreting the RNFL maps in healthy myopic eyes. Investig Ophthalmol Vis Sci. 2012;53:7194–200.CrossRefGoogle Scholar
  37. 37.
    Scherer RW, Feldon SE, Levin L, et al. Visual fields at follow-up in the Ischemic optic neuropathy decompression trial: evaluation of change in pattern defect and severity over time. Ophthalmology. 2008;115:1809–17.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Sadun AA. Metabolic optic neuropathies. Semin Ophthalmol. 2002;17:29–32.PubMedCrossRefGoogle Scholar
  39. 39.
    Yu-Wai-Man P, Griffiths PG, Chinnery PF. Mitochondrial optic neuropathies – disease mechanisms and therapeutic strategies. Prog Retin Eye Res. 2011;30:81–114.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Ophthalmology & Visual SciencesUniversity Eye Center, Hong Kong Eye Hospital, The Chinese University of Hong KongKowloonHong Kong
  2. 2.Department of Ophthalmology, Hong Kong Eye HospitalThe Chinese University of Hong KongKowloonHong Kong

Personalised recommendations