Advertisement

Role of Hypoxia-Inducible Transcription Factors in TAM Function

  • Nadine Rohwer
  • Thorsten Cramer
Chapter

Abstract

Tumour progression is characterized by massive cellular proliferation associated with alterations of the tumour microenvironment. Hence, the tumour microenvironment is considered to be of great importance for tumourigenesis and, as a consequence, might influence the response to antitumour therapy. The microenvironmental alterations comprise hypoxia, acidosis, nutrient starvation, as well as increased interstitial fluid pressure (Denko 2008; Milosevic et al. 2004; Pouyssegur et al. 2006; Vaupel et al. 1989) and are largely the result of a defective and/or inadequate tumour vasculature which develops during rapid tumour growth (Bertout et al. 2008; Brown and Giaccia 1998; Vaupel et al. 1989; Vaupel 2004). Hypoxia is present in virtually every solid tumour and probably represents the most persistent of the microenvironmental hallmarks that sway tumour progression.

Keywords

Tumour Microenvironment Interstitial Fluid Pressure Macrophage Polarization Mutate Tumour Suppressor Gene Renal Cell Carcinoma Xenograft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Beasley NJ, Leek R, Alam M et al (2002) Hypoxia-inducible factors HIF-1alpha and HIF-2alpha in head and neck cancer: relationship to tumor biology and treatment outcome in surgically resected patients. Cancer Res 62:2493–2497PubMedGoogle Scholar
  2. Belaiba RS, Bonello S, Zahringer C et al (2007) Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells. Mol Biol Cell 18:4691–4697PubMedCrossRefGoogle Scholar
  3. Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8:967–975PubMedCrossRefGoogle Scholar
  4. Bonello S, Zahringer C, Belaiba RS et al (2007) Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol 27:755–761PubMedCrossRefGoogle Scholar
  5. Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58:1408–1416PubMedGoogle Scholar
  6. Brune B, Zhou J (2007) Nitric oxide and superoxide: interference with hypoxic signaling. Cardiovasc Res 75:275–282PubMedCrossRefGoogle Scholar
  7. Burke B, Tang N, Corke KP et al (2002) Expression of HIF-1alpha by human macrophages: implications for the use of macrophages in hypoxia-regulated cancer gene therapy. J Pathol 196:204–212PubMedCrossRefGoogle Scholar
  8. Corzo CA, Condamine T, Lu L et al (2010) HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207:2439–2453PubMedCrossRefGoogle Scholar
  9. Covello KL, Kehler J, Yu H et al (2006) HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 20:557–570PubMedCrossRefGoogle Scholar
  10. Cramer T, Yamanishi Y, Clausen BE et al (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112:645–657PubMedCrossRefGoogle Scholar
  11. Dehne N, Brune B (2009) HIF-1 in the inflammatory microenvironment. Exp Cell Res 315:1791–1797PubMedCrossRefGoogle Scholar
  12. Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8:705–713PubMedCrossRefGoogle Scholar
  13. Denko NC, Fontana LA, Hudson KM et al (2003) Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22:5907–5914PubMedCrossRefGoogle Scholar
  14. Dewhirst MW, Cao Y, Moeller B (2008) Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 8:425–437PubMedCrossRefGoogle Scholar
  15. Doedens AL, Stockmann C, Rubinstein MP et al (2010) Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 70:7465–7475PubMedCrossRefGoogle Scholar
  16. Dunn GP, Koebel CM, Schreiber RD (2006) Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6:836–848PubMedCrossRefGoogle Scholar
  17. Fang HY, Hughes R, Murdoch C et al (2009) Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood 114:844–859PubMedCrossRefGoogle Scholar
  18. Frede S, Berchner-Pfannschmidt U, Fandrey J (2007) Regulation of hypoxia-inducible factors during inflammation. Methods Enzymol 435:405–419PubMedGoogle Scholar
  19. Giatromanolaki A, Koukourakis MI, Sivridis E et al (2001) Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer 85:881–890PubMedCrossRefGoogle Scholar
  20. Gordan JD, Simon MC (2007) Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev 17:71–77PubMedCrossRefGoogle Scholar
  21. Gray LH, Conger AD, Ebert M et al (1953) The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26:638–648PubMedCrossRefGoogle Scholar
  22. Gustafsson MV, Zheng X, Pereira T et al (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9:617–628PubMedCrossRefGoogle Scholar
  23. Harris AL (2002) Hypoxia – a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47PubMedCrossRefGoogle Scholar
  24. Henson PM, Hume DA (2006) Apoptotic cell removal in development and tissue homeostasis. Trends Immunol 27:244–250PubMedCrossRefGoogle Scholar
  25. Herr B, Zhou J, Werno C et al (2009) The supernatant of apoptotic cells causes transcriptional activation of hypoxia-inducible factor-1alpha in macrophages via sphingosine-1-phosphate and transforming growth factor-beta. Blood 114:2140–2148PubMedCrossRefGoogle Scholar
  26. Hiraga T, Kizaka-Kondoh S, Hirota K et al (2007) Hypoxia and hypoxia-inducible factor-1 expression enhance osteolytic bone metastases of breast cancer. Cancer Res 67:4157–4163PubMedCrossRefGoogle Scholar
  27. Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266–276PubMedCrossRefGoogle Scholar
  28. Hu CJ, Sataur A, Wang L et al (2007) The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1alpha and HIF-2alpha. Mol Biol Cell 18:4528–4542PubMedCrossRefGoogle Scholar
  29. Imamura T, Kikuchi H, Herraiz MT et al (2009) HIF-1alpha and HIF-2alpha have divergent roles in colon cancer. Int J Cancer 124:763–771PubMedCrossRefGoogle Scholar
  30. Imtiyaz HZ, Williams EP, Hickey MM et al (2010) Hypoxia-inducible factor 2alpha regulates macrophage function in mouse models of acute and tumor inflammation. J Clin Invest 120(8):2699–2714PubMedCrossRefGoogle Scholar
  31. Ivan M, Kondo K, Yang H et al (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468PubMedCrossRefGoogle Scholar
  32. Iyer NV, Kotch LE, Agani F et al (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 12:149–162PubMedCrossRefGoogle Scholar
  33. Jaakkola P, Mole DR, Tian YM et al (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472PubMedCrossRefGoogle Scholar
  34. Jewell UR, Kvietikova I, Scheid A et al (2001) Induction of HIF-1alpha in response to hypoxia is instantaneous. FASEB J 15:1312–1314PubMedGoogle Scholar
  35. Jung Y, Isaacs JS, Lee S et al (2003a) Hypoxia-inducible factor induction by tumour necrosis factor in normoxic cells requires receptor-interacting protein-dependent nuclear factor kappa B activation. Biochem J 370:1011–1017PubMedCrossRefGoogle Scholar
  36. Jung YJ, Isaacs JS, Lee S et al (2003b) IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J 17:2115–2117PubMedGoogle Scholar
  37. Jung YJ, Isaacs JS, Lee S et al (2003c) Microtubule disruption utilizes an NFkappa B-dependent pathway to stabilize HIF-1alpha protein. J Biol Chem 278:7445–7452PubMedCrossRefGoogle Scholar
  38. Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436PubMedCrossRefGoogle Scholar
  39. Koukourakis MI, Giatromanolaki A, Sivridis E et al (2002) Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int J Radiat Oncol Biol Phys 53:1192–1202PubMedCrossRefGoogle Scholar
  40. Lando D, Peet DJ, Gorman JJ et al (2002a) FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16:1466–1471PubMedCrossRefGoogle Scholar
  41. Lando D, Peet DJ, Whelan DA et al (2002b) Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295:858–861PubMedCrossRefGoogle Scholar
  42. Lau KW, Tian YM, Raval RR et al (2007) Target gene selectivity of hypoxia-inducible factor-alpha in renal cancer cells is conveyed by post-DNA-binding mechanisms. Br J Cancer 96:1284–1292PubMedCrossRefGoogle Scholar
  43. Leek RD, Talks KL, Pezzella F et al (2002) Relation of hypoxia-inducible factor-2 alpha (HIF-2 alpha) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in Human breast cancer. Cancer Res 62:1326–1329PubMedGoogle Scholar
  44. Liao D, Corle C, Seagroves TN et al (2007) Hypoxia-inducible factor-1 alpha is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res 67:563–572PubMedCrossRefGoogle Scholar
  45. Liu Y, Stewart KN, Bishop E et al (2008) Unique expression of suppressor of cytokine signaling 3 is essential for classical macrophage activation in rodents in vitro and in vivo. J Immunol 180:6270–6278PubMedGoogle Scholar
  46. Lu H, Forbes RA, Verma A (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277:23111–23115PubMedCrossRefGoogle Scholar
  47. Mahon PC, Hirota K, Semenza GL (2001) FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15:2675–2686PubMedCrossRefGoogle Scholar
  48. Makino Y, Cao R, Svensson K et al (2001) Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414:550–554PubMedCrossRefGoogle Scholar
  49. Malabarba MG, Rui H, Deutsch HH et al (1996) Interleukin-13 is a potent activator of JAK3 and STAT6 in cells expressing interleukin-2 receptor-gamma and interleukin-4 receptor-alpha. Biochem J 319(Pt 3):865–872PubMedGoogle Scholar
  50. Mandriota SJ, Turner KJ, Davies DR et al (2002) HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 1:459–468PubMedCrossRefGoogle Scholar
  51. Mantovani A, Sozzani S, Locati M et al (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555PubMedCrossRefGoogle Scholar
  52. Martinez FO, Gordon S, Locati M et al (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303–7311PubMedGoogle Scholar
  53. Maxwell PH, Wiesener MS, Chang GW et al (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275PubMedCrossRefGoogle Scholar
  54. Milosevic M, Fyles A, Hedley D et al (2004) The human tumor microenvironment: invasive (needle) measurement of oxygen and interstitial fluid pressure. Semin Radiat Oncol 14:249–258PubMedCrossRefGoogle Scholar
  55. Mole DR, Ratcliffe PJ (2008) Cellular oxygen sensing in health and disease. Pediatr Nephrol 23:681–694PubMedCrossRefGoogle Scholar
  56. Ohh M, Park CW, Ivan M et al (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2:423–427PubMedCrossRefGoogle Scholar
  57. Peyssonnaux C, Datta V, Cramer T et al (2005) HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J Clin Invest 115:1806–1815PubMedCrossRefGoogle Scholar
  58. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78PubMedCrossRefGoogle Scholar
  59. Pouyssegur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441:437–443PubMedCrossRefGoogle Scholar
  60. Qing G, Simon MC (2009) Hypoxia inducible factor-2alpha: a critical mediator of aggressive tumor phenotypes. Curr Opin Genet Dev 19:60–66PubMedCrossRefGoogle Scholar
  61. Raes G, Van den BR, De BP et al (2005) Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells. J Immunol 174:6561–6562PubMedGoogle Scholar
  62. Rankin EB, Biju MP, Liu Q et al (2007) Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J Clin Invest 117:1068–1077PubMedCrossRefGoogle Scholar
  63. Rankin EB, Rha J, Selak MA et al (2009) Hypoxia-inducible factor 2 regulates hepatic lipid metabolism. Mol Cell Biol 29:4527–4538PubMedCrossRefGoogle Scholar
  64. Raval RR, Lau KW, Tran MG et al (2005) Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25:5675–5686PubMedCrossRefGoogle Scholar
  65. Rey S, Semenza GL (2010) Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc Res 86:236–242PubMedCrossRefGoogle Scholar
  66. Rohwer N, Dame C, Haugstetter A et al (2010) Hypoxia-inducible factor 1alpha determines gastric cancer chemosensitivity via modulation of p53 and NF-kappaB. PLoS One 5:e12038PubMedCrossRefGoogle Scholar
  67. Ruscher K, Isaev N, Trendelenburg G et al (1998) Induction of hypoxia inducible factor 1 by oxygen glucose deprivation is attenuated by hypoxic preconditioning in rat cultured neurons. Neurosci Lett 254:117–120PubMedCrossRefGoogle Scholar
  68. Scotton CJ, Martinez FO, Smelt MJ et al (2005) Transcriptional profiling reveals complex regulation of the monocyte IL-1 beta system by IL-13. J Immunol 174:834–845PubMedGoogle Scholar
  69. Semenza GL (2007) Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 2007:cm8PubMedCrossRefGoogle Scholar
  70. Semenza GL (2009) HIF-1 inhibitors for cancer therapy: from gene expression to drug discovery. Curr Pharm Des 15:3839–3843PubMedCrossRefGoogle Scholar
  71. Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29:625–634PubMedCrossRefGoogle Scholar
  72. Sica A, Larghi P, Mancino A et al (2008) Macrophage polarization in tumour progression. Semin Cancer Biol 18:349–355PubMedCrossRefGoogle Scholar
  73. Tacchini L, De PC, Matteucci E et al (2004) Hepatocyte growth factor-activated NF-kappaB regulates HIF-1 activity and ODC expression, implicated in survival, differently in different carcinoma cell lines. Carcinogenesis 25:2089–2100PubMedCrossRefGoogle Scholar
  74. Takeda N, O’Dea EL, Doedens A et al (2010) Differential activation and antagonistic function of HIF-{alpha} isoforms in macrophages are essential for NO homeostasis. Genes Dev 24:491–501PubMedCrossRefGoogle Scholar
  75. Talks KL, Turley H, Gatter KC et al (2000) The expression and distribution of the hypoxia-inducible factors HIF-1 alpha and HIF-2 alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157:411–421PubMedCrossRefGoogle Scholar
  76. Teicher BA (1994) Hypoxia and drug resistance. Cancer Metastasis Rev 13:139–168PubMedCrossRefGoogle Scholar
  77. Teicher BA, Lazo JS, Sartorelli AC (1981) Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. Cancer Res 41:73–81PubMedGoogle Scholar
  78. Teicher BA, Holden SA, al-Achi A et al (1990) Classification of antineoplastic treatments by their differential toxicity toward putative oxygenated and hypoxic tumor subpopulations in vivo in the FSaIIC murine fibrosarcoma. Cancer Res 50:3339–3344PubMedGoogle Scholar
  79. Vaupel P (2004) The role of hypoxia-induced factors in tumor progression. Oncologist 9(Suppl 5): 10–17PubMedCrossRefGoogle Scholar
  80. Vaupel P (2008) Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. Oncologist 13(Suppl 3):21–26PubMedCrossRefGoogle Scholar
  81. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465PubMedGoogle Scholar
  82. Vaupel P, Mayer A, Hockel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335–354PubMedCrossRefGoogle Scholar
  83. Volm M, Koomagi R (2000) Hypoxia-inducible factor (HIF-1) and its relationship to apoptosis and proliferation in lung cancer. Anticancer Res 20:1527–1533PubMedGoogle Scholar
  84. Walmsley SR, Print C, Farahi N et al (2005) Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J Exp Med 201:105–115PubMedCrossRefGoogle Scholar
  85. Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270:1230–1237PubMedCrossRefGoogle Scholar
  86. Wang GL, Jiang BH, Rue EA et al (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92:5510–5514PubMedCrossRefGoogle Scholar
  87. Wang YC, He F, Feng F et al (2010) Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res 70:4840–4849PubMedCrossRefGoogle Scholar
  88. Werno C, Menrad H, Weigert A et al (2010) Knockout of Hif-1alpha in tumor-associated macrophages enhances M2 polarization and attenuates their pro-angiogenic responses. Carcinogenesis 31(10):1863–1872PubMedCrossRefGoogle Scholar
  89. Wiesener MS, Jurgensen JS, Rosenberger C et al (2003) Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs. FASEB J 17:271–273PubMedGoogle Scholar
  90. Yin T, Tsang ML, Yang YC (1994) JAK1 kinase forms complexes with interleukin-4 receptor and 4PS/insulin receptor substrate-1-like protein and is activated by interleukin-4 and interleukin-9 in T lymphocytes. J Biol Chem 269:26614–26617PubMedGoogle Scholar
  91. Zheng X, Linke S, Dias JM et al (2008) Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proc Natl Acad Sci USA 105:3368–3373PubMedCrossRefGoogle Scholar
  92. Zhong H, De Marzo AM, Laughner E et al (1999) Overexpression of hypoxia-inducible factor 1 alpha in common human cancers and their metastases. Cancer Res 59:5830–5835PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie and Molekulares KrebsforschungszentrumCharité – Universitätsmedizin BerlinBerlinGermany

Personalised recommendations