Advertisement

Abstract

Multiple sclerosis (MS) is a chronic, complex neurological disease with a variable clinical course in which several pathophysiological mechanisms such as axonal/ neuronal damage, demyelination, inflammation, gliosis, remyelination and repair, oxidative injury and excitotoxicity, alteration of the immune system as well as biochemical disturbances and disruption of blood-brain barrier are involved.1,2 Exacerbations of MS symptoms reflect inflammatory episodes, while the neurodegenerative aspects of gliosis and axonal loss result in the progression of disability. The precise aetiology of MS is not yet known, although epidemiological data indicate that it arises from a complex interactions between genetic susceptibility and environmental factors.3 In this chapter the brain structures and processes involved in immunopathogenesis of MS are presented. Additionaly, clinical phenotypes and biomarkers of MS are showed.

Keywords

Multiple Sclerosis Neurodegenerative Disease Multiple Sclerosis Group Onset Multiple Sclerosis Multiple Sclerosis Incidence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ramagopalan SV, Dobson R, Meier UC et al. Multiple sclerosis: risk factors, prodromes and potential causal pathways. Lanc Neurol 2010; 9:727–739.CrossRefGoogle Scholar
  2. 2.
    Bielekova B, Martin R. Development of biomarkers in multiple sclerosis. Brain 2004; 127:1463–1478.PubMedCrossRefGoogle Scholar
  3. 3.
    Martin R, Bielekova B, Hohlfeld R et al. Biomarkers in multiple sclerosis. Disease Markers 2006; 22:183–185.PubMedGoogle Scholar
  4. 4.
    Miller DH. Biomarkers and surrogate outcomes in neurodegenerative disease: les sons from multiple sclerosis. NeuroRx 2004; 1:284–294.PubMedCrossRefGoogle Scholar
  5. 5.
    Pugliatti M, Sotgiu S, Rosati G. The worldwide prevalence of multiple sclerosis. Clin Neurol Neurosurg 2002; 104:182–191.PubMedCrossRefGoogle Scholar
  6. 6.
    Pugliatti M, Harbo HF, Holmøy T et al. Enviromental risk factors in multiple sclerosis. Acta Neurol Scand Suppl 2008; 188:34–40.CrossRefGoogle Scholar
  7. 7.
    Al-Omaishi J, Bashir R, Gendelman HE. The cellular immunology of multiple sclerosis. J Leukoc Biol 1999; 65:444–452.PubMedGoogle Scholar
  8. 8.
    Barnett MH, Parratt JDE, Pollard JD et al. MS: Is it one disease? Internat MS J 2009; 16:57–65.Google Scholar
  9. 9.
    Kurtzke JF. Multiple sclerosis In time and space—geographic clues to causa. J Neurovirol 2000; 6:134–140.Google Scholar
  10. 10.
    Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part II. Noninfections factors. Ann Neurol 2007; 61:504–513.PubMedCrossRefGoogle Scholar
  11. 11.
    Munger KL, Ascherio A. Risk factors in development of multiple sclerosis. Exper Rev Clin Immunol 2007; 3:739–748.CrossRefGoogle Scholar
  12. 12.
    Levin LI, Munger KL, O'Reilly EJ et al. Primary infection with the Epstein-Barr virus and risk of multiple sclerosis 2010; 6:824–830.Google Scholar
  13. 13.
    Oksenberg JR, Barcellos LF. The complex genetic aetiology of multiple sclerosis. J Neurovirol 2000; 6:210–214.Google Scholar
  14. 14.
    Oksenberg JR, Hauser SL. Mapping the human genome with newfound precision. Ann Neurol 2010; 67:A8–A10.PubMedCrossRefGoogle Scholar
  15. 15.
    Baranzini SE. The genetics of autoimmune diseases: a networked perspective. Curr Opin Immunol 2009; 21:596–605.PubMedCrossRefGoogle Scholar
  16. 16.
    Baranzini SE, Wang J, Gibson RA et al. Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Hum Mol Genet 2009; 18:767–778.PubMedCrossRefGoogle Scholar
  17. 17.
    Al.-Omaishi J, Bashir R, Gendelman HE. The cellular immunology of multiple sclerosis. J Leuk Biol 1999; 65:444–452.Google Scholar
  18. 18.
    Arnett PA. Does cognitive reserve Apple to muli ple sclerosis? Neurology 2010; 74:1934–1935.PubMedCrossRefGoogle Scholar
  19. 19.
    Rejdak K, Jackson S, Giovannoni G. Multiple sclerosis: a practical overview fot clinicians. Br Med Bull 2010 [Epub ahead of print].Google Scholar
  20. 20.
    Lublin FD. The incomplete nature of multiple sclerosis relapse resolution. J Neurol Sci 2007; 256:14–18.CrossRefGoogle Scholar
  21. 21.
    Ontaneda D, Rae D, Rea AD. Management of acute exacerbations in multiple disability progression in sclerosis Ann Indian Acad Neurol 2009; 12:264–272.PubMedCrossRefGoogle Scholar
  22. 22.
    Lerday E, Yaouanq J, Le Page E et al. Evidence for a two-stages multiple sclerosis. Brain 2010; 10:1–14.Google Scholar
  23. 23.
    Stüve O, Oksenberg J. In: Pagon RA, Bird TC, Dolan CR, Stephens K, editors. GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2006 [updated 2010 May 11].Google Scholar
  24. 24.
    Bashir K, Whitaker JN. Clinical and laboratory features of primary progressive and secondary progressive MS. Neurology 1999; 53:765–771.PubMedGoogle Scholar
  25. 25.
    Liguori M, Marrosu MG, Pugliatti M et al. Age at onset in multiple sclerosis. Neurol Sci 2000; 21:825–829.CrossRefGoogle Scholar
  26. 26.
    Tullman MJ, Oshinsky RJ, Lublin FD et al. Clinical characteristics of progressive relapsing multiple sclerosis. Mult Scler 2004; 10:451–454.PubMedCrossRefGoogle Scholar
  27. 27.
    Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis: results of an international survey. National multiple sclerosis society (USA) advisory committee on clinical trials of new agents in multiple sclerosis. Neurology 1996; 46:907–911.PubMedGoogle Scholar
  28. 28.
    Martinelli V, Rodegher M, Moiola L et al. Late onset multiple sclerosis: clinical characteristics, prognostic factors and differential diagnosis. Neurol Sci 2004; 25 Suppl 4:350–355.CrossRefGoogle Scholar
  29. 29.
    Noseworthy JH, Lucchinetti C, Rodriguez M et al. Multiple sclerosis. N Engl J Med 2000; 343:938–952.PubMedCrossRefGoogle Scholar
  30. 30.
    Polman CH, Reingold SC, Edan G et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 2005; 58:840–846.PubMedCrossRefGoogle Scholar
  31. 31.
    Wck-Guttman B, Jacobs LD. What is New in the treatment of multiple sclerosis? Drugs 2000; 59:401–410.CrossRefGoogle Scholar
  32. 32.
    Compston A, Coles A. Multiple sclerosis. Lancet 2002; 372:1221–1231.CrossRefGoogle Scholar
  33. 33.
    Compston A, Coles A. Multiple sclerosis. Lancet 2008; 372:1502–1517.PubMedCrossRefGoogle Scholar
  34. 34.
    Bechmann J, Galea J, Perry VH. What is the blood-brain barier (not)? Trends Immunol 2007; 28:5–11.PubMedCrossRefGoogle Scholar
  35. 35.
    Ribatti D, Nico B, Crivellato E. Development of the blond-brain barier: a historical point of view. Anat Rec B New Anat 2006; 289:3–8.PubMedGoogle Scholar
  36. 36.
    Nair A, Frederick TJ, Miller SD. Astrocytes in multiple sclerosis: A product of environment. Cell Mol Life Sci 2008; 65:2702–2720.PubMedCrossRefGoogle Scholar
  37. 37.
    Wolburg H, Lippoldt A. Tight junctions of the blood-brain barier development, composition and regulation. Vascul Pharmacol 2002; 38:323–337.PubMedCrossRefGoogle Scholar
  38. 38.
    Abott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barier. Nat Rev Neurosci 2006; 7:41–53.CrossRefGoogle Scholar
  39. 39.
    Frank-Cannon TC, Altol T, McAlpine FE. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodeger 2009; 4:47.CrossRefGoogle Scholar
  40. 40.
    Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 2005; 76(2):77–98.PubMedCrossRefGoogle Scholar
  41. 41.
    Bradl M, Lassman H. Oligodendrocytes: biology and pathology. Acta Neuropatol 2010; 119:37–53.CrossRefGoogle Scholar
  42. 42.
    Bauman N, Pham-Dinh D. Biology of oligodendrocytes and myelin in the mammalian central nervous system. Physiol Rev 2001; 81:871–927.Google Scholar
  43. 43.
    Watzlawik J, Warrington AE, Rodriguez M. Importance of oligodendrocyte protection BBB. Expert Rev Neurother 2010;10(3):441–457.PubMedCrossRefGoogle Scholar
  44. 44.
    Leoni V. Oxysterols as markers of neurological disease—a review. Scan J Cin Lab Invest 2009; 69:22–25.CrossRefGoogle Scholar
  45. 45.
    Stadelmann C, Brück W. Interplay between mechanisms of damage and repair in multiple sclerosis. J Neurol 2008; 255:12–18.PubMedCrossRefGoogle Scholar
  46. 46.
    Goodin DS. The casual cascade to Multiple sclerosis: a model for MS pathogenesis. PLoSOul 2009; 4:4565.Google Scholar
  47. 47.
    Hohlfeld R. Review: ‘Gimme five’: future challenges in multiple sclerosis. ECTRIMS Lecture 2009. Mult Scler 2010; 16:3–14.Google Scholar
  48. 48.
    Peterson LK, Fujinami RS. Inflammation, demyelination, neurodegeneration and neuroprotection in the pathogenesis of multiple sclerosis. J Neuroimmun 2007; 184:37–44.CrossRefGoogle Scholar
  49. 49.
    Racke MK. Immunopathogenesis of multiple sclerosis. Ann Indian Neurol 2009; 12:215–220.CrossRefGoogle Scholar
  50. 50.
    Frischer JM, Bramow S, Dal-Bianco A et al. The relation between inflamation and neurodegeneration in multiple sclerosis brains. Brain 2009; 132:1175–1189.PubMedCrossRefGoogle Scholar
  51. 51.
    Goverman J. Autoimmune T-cell responses in the central nervous system. Nat Rev Immunol 2009; 9:393.PubMedCrossRefGoogle Scholar
  52. 52.
    Brück W. The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage. J Neurol 2005; 252 Suppl 5:3–9.CrossRefGoogle Scholar
  53. 53.
    Christophi GP, Panos M, Hudson ChA et al. Macrophages of multiple sclerosis patients display deficient SHP-1 expression and enhanced inflammatory phenotype. Lab Invest 2009; 89:742–759.PubMedCrossRefGoogle Scholar
  54. 54.
    Hedegaard Ch J, Krakauer M, Bendtrek LH et al. Thelper cell type 1 (Th1), Th2 and TH17 responses to myelin basic protein and disease activity in multiple sclerosis. Immunology 2008; 125:161–169.PubMedCrossRefGoogle Scholar
  55. 55.
    DeLuca GC, Wiliams K, Evangelou et al. The contribution of demyelinisation to amonal loss in multiple sclerosis. Brain 2006; 129:1507–1516.PubMedCrossRefGoogle Scholar
  56. 56.
    Zivadinov R, Cox JL. Neuroimaging in multiple sclerosis. Int Rev Neurobiol 2007; 79:449-474. 57._Benedetti B, Rovaris M, Rocca MA et al. Evidence for stable neuroaxonal damage in the brain of patients with benign multiple sclerosis Mult Scler 2009; 15:789–794.CrossRefGoogle Scholar
  57. 58.
    Bernal F, Elias B, Hartung HP et al. Regulation of matrix metalloproteinases and their inhibitors by interferon-?: a longitudinal study in multiple sclerosis patients. Mult Scler 2009; 15:721–727.PubMedCrossRefGoogle Scholar
  58. 59.
    Zoppo GJ, Milner R. Integrin-matrix interactions in the cerebral microvasculature. Arterioscler Thromb Vasc Biol 2006; 26;1966–1975.PubMedCrossRefGoogle Scholar
  59. 60.
    Arai K, Lo EH. Oligovasular signalig in white matter stroke. Biol Pharm Bull 2009; 32:1639–1644.PubMedCrossRefGoogle Scholar
  60. 61.
    Goncalves DaSilva A, Yong VW. Matrix metalloproteinase-12 deficiency Horsens relapsing-remitting experimental autoimmune encephalomyelitis in association with cytokine and chemokine dysregulation. Am J Pathol 2009; 174:898–909.PubMedCrossRefGoogle Scholar
  61. 62.
    Becher B, Durell BG, Noelle RJ. IL-23 produced by CNS-resident cells controls T-cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. J Clin Invest 2003; 112:1186–1191.PubMedGoogle Scholar
  62. 63.
    Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 2007; 8:345–350.PubMedCrossRefGoogle Scholar
  63. 64.
    Simpson JE, Newcombe J, Cuzner ML et al. Expression of the interferon-gammainducible chemokines IP-10 and Mig and their receptor, CXCR3, in multiple sclerosis lesions. Neuropathol Appl Neurobiol 2000; 26:133–142.PubMedCrossRefGoogle Scholar
  64. 65.
    Balashov KE, Rottman JB, Weiner HL et al. CCR5(?) and CXCR3(?) T-cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc Natl Acad Sci USA 1999; 96:6873–6878.PubMedCrossRefGoogle Scholar
  65. 66.
    Schmitz T, Chew LJ. Cytokines and myelination in the central nervous system. ScientificWorld Journal 2008; 8:1119–1147.PubMedCrossRefGoogle Scholar
  66. 67.
    Kort JJ, Kawamura K, Fugger L et al. Efficient presentation of myelin oligodendrocyte glycoprotein peptides but not protein by astrocytes from HLA-DR2 and HLADR4 transgenic mice. J Neuroimmunol 2006; 173:23–34.PubMedCrossRefGoogle Scholar
  67. 68.
    Miljkovic D, Momcilovic M, Stojanovic I et al. Astrocytes stimulate interleukin-17 and interferon-gamma production in vitro. J Neurosci Res 2007; 85:3598–3606.PubMedCrossRefGoogle Scholar
  68. 69.
    Dong Y, Benveniste EN. Immune function of astrocytes. Glia 2001; 36:180–190.PubMedCrossRefGoogle Scholar
  69. 70.
    Hemmer B, Archelos JJ, Hartung HP. New concepts in the immunopathogenesis of multiple sclerosis. Nat Rev Neurosci 2002; 3:291–301.PubMedCrossRefGoogle Scholar
  70. 71.
    Bullard DC, Hu X, Schoeb TR et al. Intracellular adhesion molekule—1 expresion required on multiple cell types for development of expermental autoimmune encephalomyelitis. J Immunol 2007; 178:851–857.PubMedGoogle Scholar
  71. 72.
    Sobel RA, Mitchell ME, Fondren G. Interacellular adhesion molecule (ICAM-1) in cellular immune reactions in the human central nervous system. Am J Pathol 1990; 136:1309–1316.PubMedGoogle Scholar
  72. 73.
    Allavena R, Noy S, Andrews M et al. CNS elevation of vascular and not mucosal addressin cell adhesion molecules in patients with multiple sclerosis. Am J Pathol 2010; 176:556–562.PubMedCrossRefGoogle Scholar
  73. 74.
    Malik M, Chen YY, Kienzle MF et al. Monocyte migration and LFA-1 mediated attachment to brain microvascular endothelial is regulated by SDF-1 alpha though Lyn kinase. J Immunl 2008; 181:4632–4637.Google Scholar
  74. 75.
    Chari DM. Remyelination in multiple sclerosis. Int Rev Neurobiol 2007; 79:589–620.PubMedCrossRefGoogle Scholar
  75. 76.
    Jakovcevski I, Filipovic R, Mo Z et al. Oligodendrocyte development and the onset of myelination in the human fetal brain. Front Neuroanat 2009; 3:5.PubMedCrossRefGoogle Scholar
  76. 77.
    Dubois-Dalcq M, Willams A, Stadelmann Ch et al. From fish to man: understanding endogenous remyelination in central nervius system demyelinating diseases. Brain 2008; 131:1686–1700.PubMedCrossRefGoogle Scholar
  77. 78.
    Chandran S, Hunt D, Joannides A et al. Myelin repair: the role of stem and prekursor cells in multiple sclerosis. Phil Trans R Soc 2008; 363:171–183.CrossRefGoogle Scholar
  78. 79.
    Chang A, Smith MC, Yin X et al. Neurogenesis in the chronic lesions of multiple sclerosis. Brain 2008; 131:2366–2375.PubMedCrossRefGoogle Scholar
  79. 80.
    Ingram G, Hakobyan S, Robertson NP et al. Complement in multiple sclerosis: its role in disease and potential as a biomarker. Clinic Exper Immunology 2008; 155:128–139.CrossRefGoogle Scholar
  80. 81.
    Carson MJ. Microglia as leasions between the immune and central nervous systems: functional implications for multiple sclerosis. Glia 2002; 40:218–231.PubMedCrossRefGoogle Scholar
  81. 82.
    Orhan A, Ullrich O, Infante-Durte C et al. Neuronal damage in brain inflammation. Arch Neurol 2007; 64:185–189.CrossRefGoogle Scholar
  82. 83.
    Armstrong AC, Le TQ, Flint NC et al. Endogenous cell repair of chronic demyelination. J Neuropathol Exp Neurol 2006; 65:245–256.PubMedGoogle Scholar
  83. 84.
    Hooper DC, Scott GS, Zborek A et al. Uric acid, a peroxynitrite scavenger, inhibits CNS inflammation, blood-CNS barier permeability changes, and tissue damage in a mouse model of multiple sclerosis. FASEB 2004; 14:691–698.Google Scholar
  84. 85.
    Gilgun-Sherki Y, Melamed E, Offen D. The role of oxidative stress in the pathogenesis of multiple sclerosis. The need for the effective antioxidant therapy. J Neurol 2004; 251:261–268.PubMedCrossRefGoogle Scholar
  85. 86.
    Gonsette R. Oxidative stress and excitotoxicity: a therapeutic issue in multiple sclerosis? Mult Scler 2008; 14:22–34.PubMedCrossRefGoogle Scholar
  86. 87.
    Miller E, Mrowicka M, Żołyński K et al. Oxidative stress in multiple sclerosis. Pol Merk Lek 2009; 27:499.Google Scholar
  87. 88.
    Miller E, Mrowicka M, Malinowska K et al. Effects of whole body cryotherapy on total antioxidative status and activities of antioxidative enzymes in blood of patients with multiple sclerosis. J Med Invest 2010; 57:168–173.PubMedCrossRefGoogle Scholar
  88. 89.
    Miller E, Rutkowski M. Contribution and part of main biochemic factors in ischemic insult. Pol Merk Lek 2006; 117:261–264.Google Scholar
  89. 90.
    Calabrese V, Cornelius C, Rizzarelli E et al. Nitric oxide in cell survival: a jams molecule. Antioxid Redox Signal 2009; 11:2717–2739.PubMedCrossRefGoogle Scholar
  90. 91.
    Trapp BD, Sys PK. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol 2009; 8:280–291.PubMedCrossRefGoogle Scholar
  91. 92.
    Bishop A, Hobbs KG, Equchi A et al. Differential sensivity of oligodendrocytes and motor neurons to reactive nitrogen species: implications for multiple sclerosis. J Neurochem 2009; 109:93–104.PubMedCrossRefGoogle Scholar
  92. 93.
    Clarcson A, Sutherland B, Appelton I. The biology and pathology of hypoxia-ischaemia-induced brain damage: an update. Arch Immunol Ther Exp 2005; 53:213–225.Google Scholar
  93. 94.
    Muniandy S, Qvist R, Ong Siok Yan G et al. The oxidative stress of hyperglycemia and the inflammatory process in endothelial cells. J Investigating Med 2009; 56:6–10.CrossRefGoogle Scholar
  94. 95.
    Koch M, Mostert J, Arutjunyan AV et al. Plasma lipid peroxidation and progression of disability in multiple sclerosis. Eur J Neurol 2007; 14529–14533.Google Scholar
  95. 96.
    Drulovic J, Dujmovic I, Stojsavljevic N et al. Uric acid levels in serum from patients with multiple sclerosis. J Neurol 2001; 248:121–126.PubMedCrossRefGoogle Scholar
  96. 97.
    Hooper DC, Scott GS, Zborek A et al. Uric acid, a peroxynitrite scavenger, inhibits CNS inflammation. The FASEB J 2000; 14:691–698.Google Scholar
  97. 98.
    Rentzos M, Nikolaou C, Anagnostouli M et al. Serum uric acid and multiple sclerosis. Clin Neurol Neurosurg 2006; 108:527–531.PubMedCrossRefGoogle Scholar
  98. 99.
    Pierrot-Deseilligny C. Clinical implications of a possible role of vitamin D in multiple sclerosis. J Neurol 2009; 256:1468–1479.PubMedCrossRefGoogle Scholar
  99. 100.
    Debouverie M. Gender as a prognostic factor and its impact on the incidence of multiple sclerosis in Lorraine, France. J Neurol Sci 2009; 286:14–17.PubMedCrossRefGoogle Scholar
  100. 101.
    Smolders J, Damoiseaux J, Menheere P. Vitamin D as an immune modulator in multiple sclerosis. J Neuroimmunol 2008; 194:7–17.PubMedCrossRefGoogle Scholar
  101. 102.
    Correale J, Célica Ysrraelit M, Inés Gaitán M. Immunomodulatory effects of Vitamin D in multiple sclerosis. Brain 2009:132; 1146–1160.PubMedCrossRefGoogle Scholar
  102. 103.
    Zittermann A. Vitamin D in preventive medicine: are we ignoring the evidence? Clinical implications of a possible role of vitamin D in multiple sclerosis. Br J Nutr 2003; 89:552–572.PubMedCrossRefGoogle Scholar
  103. 104.
    Sheremata W, Jy W, Horstman LL et al. Evidence of platelet activation in multiple sclerosis. J Neuroinflam 2008; 5:27.CrossRefGoogle Scholar
  104. 105.
    Horstman LL, Jy WW, Zavadinov R et al. Role of platelets in neuroinflammation: a wide-angle perspective J Neuroinflam 2010; 7:10.CrossRefGoogle Scholar
  105. 106.
    Wachowicz B, Rywaniak J Z, Nowak P. Apoptic matkers in human blood platelets treated with peroxynitrite. Platelets 2008; 19:624–635.PubMedCrossRefGoogle Scholar
  106. 107.
    Putnam TJ. Studies in multiple sclerosis (iv) ‘encephalitis’ and sclerotic plaques produced by venular obstruction. Arch Neurol Neurosurg Psychiat 1935; 33:929–940.Google Scholar
  107. 108.
    Losy J, Niezgoda A, Wender M. Increased serum levels of solube PECAM-1 in multiple sclerosis patients with brain gadolinum enhancing lesions. J Neuroimmunol 1999; 99:169–172.PubMedCrossRefGoogle Scholar
  108. 109.
    Van Walderveen MA, Barkhof F, Pouwels PJ et al. Neuronal damage in T1-hypointense multiple sclerosis lesions demonstrated in vivo using proton magnetic resonance spectroscopy. Ann Neurol 1999; 46:79–87.PubMedCrossRefGoogle Scholar
  109. 110.
    Martin R, Bielekova B, Hohfeld R et al. Biomarkers in multiple sclerosis. Disease Markers 2006; 22:183–185.PubMedGoogle Scholar
  110. 111.
    Seven A, Aslan M. Biochemical and immunological markers of multiple sclerosis. Turk J Biochem 2007; 32:112–119.Google Scholar
  111. 112.
    Markowitz CE. The current landscape and unmetneeds in multiple sclerosis. Am J Manage Care 2010; 16:211–218.Google Scholar
  112. 113.
    Vyshkina T, Kalman B. Autoantibodies and neurodegeneration in multiple sclerosis. Lab Investig 2008; 88:796–784.PubMedCrossRefGoogle Scholar
  113. 114.
    McDonagh M, Dana T, Chan BKS et al. Drug Class Review on Disease-modifying Drugs for multiple sclerosis: Final Report. [Internet] 2007; Drug Class Reviews.Google Scholar
  114. 116.
    Murphy JA, Harris JA, Cramnage AJ. Potential short-term use of oral cladribine in treatment of relapsing-remitting multiple sclerosis. Neuropsychiatr Dis Treat 2010; 6:619–25.PubMedCrossRefGoogle Scholar
  115. 117.
    Rasova K, Feys P, Henze T et al. Emerging evidence-based physical rehabilitation for multiple sclerosis-Towards an inventory of current content across Europe. Health and Quality of Life outcomes 2010; 8:76.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  • Elżbieta Miller
    • 1
    • 2
  1. 1.Neurorehabilitation WardIII General Hospital of LodzLodzPoland
  2. 2.Department of Chemistry and Clinical BiochemistryUniversity of BydgoszczBydgoszczPoland

Personalised recommendations