The “Quantum Soul”: A Scientific Hypothesis

  • Stuart HameroffEmail author
  • Deepak Chopra
Part of the Mindfulness in Behavioral Health book series (MIBH)


The concept of consciousness existing outside the body (e.g. near-death and out-of body experiences, NDE/OBEs, or after death, indicative of a ‘soul’) is a staple of religious traditions, but shunned by conventional science because of an apparent lack of rational explanation. However conventional science based entirely on classical physics cannot account for normal in-the-brain consciousness. The Penrose-Hameroff ‘Orch OR’ model is a quantum approach to consciousness, connecting brain processes (microtubule quantum computations inside neurons) to fluctuations in fundamental spacetime geometry, the fine scale structure of the universe. Recent evidence for significant quantum coherence in warm biological systems, scale-free dynamics and end-of-life brain activity support the notion of a quantum basis for consciousness which could conceivably exist independent of biology in various scalar planes in spacetime geometry. Sir Roger Penrose does not necessarily endorse such proposals which relate to his ideas in physics. Based on Orch OR, we offer a scientific hypothesis for a ‘quantum soul’.


Planck Scale Conscious Experience Conscious Awareness Altered State Loop Quantum Gravity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Auyong, D. B., Klein, S. M., Gan, T. J., Roche, A. M., Olson, D. W., & Habib, A. S. (2010). Processed electroencephalogram during donation after cardiac death. Anesthesia and Analgesia, 110(5), 1428–1432.PubMedCrossRefGoogle Scholar
  2. Bandyopadhyay, A. (2010). Direct experimental evidence for quantum states in microtubules and topological invariance. Toward a Science of Consciousness 2011 Abstracts. Retrieved, from (manuscript in preparation).
  3. Blackmore, S. J. (1998). Experiences of anoxia: Do reflex anoxic seizures resemble near-death experiences? Journal of Near Death Studies, 17, 111–120.CrossRefGoogle Scholar
  4. Blanke, O., Landis, T., Spinelli, L., & Seeck, M. (2004). Out-of-body experience and autoscopy of neurological origin. Brain, 127(2), 243–258.PubMedCrossRefGoogle Scholar
  5. Brunden, K. R., Yao, Y., Potuzak, J. S., Ferrer, N. I., Ballatore, C., James, M. J., et al. (2011). The characterization of microtubule-stabilizing drugs as possible therapeutic agents for Alzheimer’s disease and related tauopathies. Pharmacological Research, 63(4), 341–351.PubMedCrossRefGoogle Scholar
  6. Chalmers, D. J. (1996). The conscious mind – in search of a fundamental theory. New York: Oxford University Press.Google Scholar
  7. Chawla, L. S., Akst, S., Junker, C., Jacobes, B., & Seneff, M. G. (2009). Surges of electroencephalogram activity at the time of death: A case study. Journal of Palliative Medicine, 12(12), 1095–1100.PubMedCrossRefGoogle Scholar
  8. Chopra, D. (2001). How to know god: The soul’s journey into the mystery of mysteriesNew york, NY. Running Press Book Publishers.Google Scholar
  9. Chopra, D. (2006). Life after death – the burden of proof. New York: Three Rivers Press.Google Scholar
  10. Chown, M. (2009). Our world may be a giant hologram. NewScientist. Retrieved, from
  11. Christie, J. M., & Westbrook, G. L. (2006). Lateral excitation within the olfactory bulb. Journal of Neuroscience., 26(8), 2269–2277.PubMedCrossRefGoogle Scholar
  12. Crick, F. C., & Koch, C. (2001). A framework for consciousness. Nature Neuroscience, 6, 119–126.CrossRefGoogle Scholar
  13. Csete, M. (2010). Donation after cardiac death and the anesthesiologist. Anesthesia and Analgesia, 5, 1253–1254.CrossRefGoogle Scholar
  14. Davies, P. (2006). The Goldilocks enigma. London: Allen Lane.Google Scholar
  15. Dennett, D. C. (1991). Consciousness explained. Boston: Little, Brown.Google Scholar
  16. Dermietzel, R. (1998). Gap junction wiring: A ‘new’ principle in cell-to-cell communication in the nervous system? Brain Research Reviews, 26(2–3), 176–183.PubMedCrossRefGoogle Scholar
  17. Engel, G. S., Calhoun, T. R., Read, E. L., Ahn, T.-K., Mancal, T., Cheng, Y.-C., et al. (2007). Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature, 446, 782–786.PubMedCrossRefGoogle Scholar
  18. Gray, C. M., & Singer, W. (1989a). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Sciences USA (Vol. 86, pp. 1698–1702). USA.Google Scholar
  19. Gray, C. M., & Singer, W. (1989b). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Sciences USA (Vol. 86, pp. 1698–1702). USA.Google Scholar
  20. Greyson, B. (1993). Varieties of near-death experience. Psychiatry, 56(4), 390–399.PubMedGoogle Scholar
  21. Gurzadyan, V. G., & Penrose, R. (2010). Concentric circles in WMAP data may provide evidence of violent pre-Big-Bang activity. arXiv:1011.3706.Google Scholar
  22. Hameroff, S. (1998a). Quantum computation in brain microtubules? The Penrose Hameroff “Orch OR” model of consciousness. Philosophical Transactions of the Royal Society of London Series A, 356, 1869–1896.Google Scholar
  23. Hameroff, S. (1998b). Quantum computation in brain microtubules – the Penrose-Hameroff “Orch OR” model of consciousness. Philosophical Transactions of the Royal Society of London Series A, 356, 1869–1896.CrossRefGoogle Scholar
  24. Hameroff, S. (2006). Consciousness, neurobiology and quantum mechanics: The case for a connection. In Tuszyuski J (Ed.), The emerging physics of consciousness. New York: Springer.Google Scholar
  25. Hameroff, S. (2007). The brain is both neurocomputer and quantum computer. Cognitive Science, 31, 1035–1045.PubMedCrossRefGoogle Scholar
  26. Hameroff, S. (2010). The “conscious pilot”-dendritic synchrony moves through the brain to mediate consciousness. Journal of Biological Physics, 36(1), 71–93.PubMedCrossRefGoogle Scholar
  27. Hameroff, S. R., & Penrose, R. (1996a). Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness. In S. R. Hameroff, A. Kaszniak, & A. C. Scott (Eds.), Toward a science of consciousness the first Tucson discussions and debates (pp. 507–540). Cambridge: MIT Press. Also published in Mathematics and Computers in Simulation (1996) 40:453–480.Google Scholar
  28. Hameroff, S. R., & Penrose, R. (1996b). Conscious events as orchestrated spacetimeselections. Journal of Consciousness Studies, 3(1), 36–53.Google Scholar
  29. Hawking, S., & Mlodinow, L. (2010). Grand design. New York: Bantam.Google Scholar
  30. Hebb, D. O. (1949). Organization of behavior: A neuropsychological theory. New Yourk: Wiley.Google Scholar
  31. Hodgson, D. (2007). Making our own luck. Ratio, 20, 278–292.CrossRefGoogle Scholar
  32. Hogan, C. J. (2008). Measurement of quantum fluctuations in geometry. Physical Review D, 77(10), 104031. doi:  10.1103/PhysRevD.77.104031.arXiv:0712.3419
  33. Huxley, T. H. (1893). Method and results: Essays.Google Scholar
  34. Jansen, K. L. (2000). A review of the nonmedical use of ketamine: Use, users and consequences. Journal of Psychoactive Drugs, 32(4), 419–433.PubMedCrossRefGoogle Scholar
  35. Koch, C. (2004). The quest for consciousness: A neurobiological approach. Englewood: Roberts and Company.Google Scholar
  36. Koch, C., & Crick, F. (2001). The zombie within. Nature, 411, 893.PubMedCrossRefGoogle Scholar
  37. Lennon, J., & McCartney, P. (1968). Everybody’s got something to hide except for me and my monkey. White Album. Sony /ATV Music, Nashville,TN.Google Scholar
  38. Lutz, A., Greischar, L. L., Rawlings, N. B., Ricard, M., & Davidson, R. J. (2004). Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. The Proceedings of the National Academy of Sciences USA, 101(46), 16369–16373.CrossRefGoogle Scholar
  39. Nadeau, R., & Kafatos, M. (2001). The non-local universe: The new physics and matters of the mind. Oxford: Oxford University Press.Google Scholar
  40. Papadelis, C., Poghosyan, V., Fenwick, P. B., & Ioannides, A. A. (2009). MEG’s ability to localise accurately weak transiently neural sources. Clinical Neurophysiology, 120(11), 1958–1970.PubMedCrossRefGoogle Scholar
  41. Parnia, S., Spearpoint, K., & Fenwick, P. B. (2007). Near death experiences, cognitive function and psychological outcomes of surviving cardiac arrest. Resuscitation, 74(2), 215–221.PubMedCrossRefGoogle Scholar
  42. Penrose, R. (2004). The road to reality: A complete guide to the laws of the universe. London: Vintage Books.Google Scholar
  43. Penrose, R. (2010). Cycles of time: An extraordinary new view of the universe. London: The Bodley Head.Google Scholar
  44. Penrose, R., & Hameroff, S. R. (1995). Gaps, what gaps? Reply to Grush and Churchland. Journal of Consciousness Studies, 2(2), 99–112.Google Scholar
  45. Planck, M. (1931). The observer, London, Januvary 29, 1931.Google Scholar
  46. Singer, W. (1999). Neuronal synchrony: A versatile code for the definition of relations. Neuron, 24, 111–125.CrossRefGoogle Scholar
  47. Singer, W., & Gray, C. M. (1995). Visual feature integration and the temporal correlation hypothesis. Annual Review of Neuroscience, 18, 555–586.PubMedCrossRefGoogle Scholar
  48. Susskind, L. (1994). The world as a hologram. Retrieved, from
  49. van Lommel, P., van Wees, R., Meyers, V., & Elfferich, I. (2001). Near-death experience in survivors of cardiac arrest: A prospective study in The Netherlands. Lancet, 358(9298), 2039–2045.PubMedCrossRefGoogle Scholar
  50. Wegner, D. M. (2002). The illusion of conscious will. Cambridge: MIT Press.Google Scholar
  51. Zizzi, P. A. (2004). Emergent consciousness: From the early universe to our mind. Retrieved, from

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Departments of Anesthesiology and Psychology, Center for Consciousness StudiesThe University of Arizona Medical CenterTucsonUSA
  2. 2.The Chopra CenterCarlsbadUSA

Personalised recommendations