Skip to main content

Ceramide Signaling in Retinal Degeneration

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Abstract

Retinal degenerations (RD) are a complex heterogeneous group of diseases in which retinal photoreceptors and the supporting retinal pigment epithelial cells die irreversibly, causing visual loss for millions of people. Mutations on more than 150 genes have been discovered for RD and there are many forms that possess complex etiology involving more than one gene and environmental effect. For years, many have searched for some common intracellular second messenger for these many forms of cell death which could be targeted for therapy. Ceramide is a novel cellular second messenger which signals for apoptosis. Several lines of evidence suggest an integral role of ceramide in photoreceptor apoptosis and cell death. Understanding their role in the pathogenic pathways of retinal degenerative diseases is important for development of targeted therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahan CE, Miranda GE, Agnolazza DL et al (2010) Synthesis of sphingosine is essential for oxidative stress-induced apoptosis of photoreceptors. Invest Ophthalmol Vis Sci 51:1171–1180

    Article  PubMed  Google Scholar 

  • Acharya JK, Dasgupta U, Rawat SS et al (2008) Cell-nonautonomous function of ceramidase in photoreceptor homeostasis. Neuron 57:69–79

    Article  PubMed  CAS  Google Scholar 

  • Acharya U, Mowen MB, Nagashima K et al (2004) Ceramidase expression facilitates membrane turnover and endocytosis of rhodopsin in photoreceptors. Proc Natl Acad Sci USA 101:1922–1926

    Article  PubMed  CAS  Google Scholar 

  • Acharya U, Patel S, Koundakjian E et al (2003) Modulating sphingolipid biosynthetic pathway rescues photoreceptor degeneration. Science 299:1740–1743

    Article  PubMed  CAS  Google Scholar 

  • Allikmets R (2004) Leber congenital amaurosis: a genetic paradigm. Ophthalmic Genet 25:67–79

    Article  PubMed  CAS  Google Scholar 

  • Auslender N, Sharon D, Abbasi AH et al (2007) A common founder mutation of CERKL underlies autosomal recessive retinal degeneration with early macular involvement among Yemenite Jews. Invest Ophthalmol Vis Sci 48:5431–5438

    Article  PubMed  Google Scholar 

  • Barak A, Morse LS, Goldkorn T (2001) Ceramide: a potential mediator of apoptosis in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 42:247–254

    PubMed  CAS  Google Scholar 

  • Barak A, Goldkorn T, Morse LS (2005) Laser induces apoptosis and ceramide production in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 46:2587–2591

    Article  PubMed  Google Scholar 

  • Brownstein S, Meagher-Villemure K, Polomeno RC et al (1978) Optic nerve in globoid leukodystrophy (Krabbe’s disease). Ultrastructural changes. Arch Ophthalmol 96:864–870

    Article  PubMed  CAS  Google Scholar 

  • Carella G (2003) Introduction to apoptosis in ophthalmology. Eur J Ophthalmol 13 Suppl 3:S5–10

    PubMed  Google Scholar 

  • Chang GQ, Hao Y, Wong F (1993) Apoptosis: final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice. Neuron 11:595–605

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta U, Bamba T, Chiantia S et al (2009) Ceramide kinase regulates phospholipase C and phosphatidylinositol 4, 5, bisphosphate in phototransduction. Proc Natl Acad Sci USA 106:20063–20068

    PubMed  CAS  Google Scholar 

  • Futerman AH, Hannun YA (2004) The complex life of simple sphingolipids. EMBO Rep 5:777–782

    Article  PubMed  CAS  Google Scholar 

  • German OL, Miranda GE, Abrahan CE et al (2006) Ceramide is a mediator of apoptosis in retina photoreceptors. Invest Ophthalmol Vis Sci 47:1658–1668

    Article  PubMed  Google Scholar 

  • Glazer LC, Dryja TP (2002) Understanding the etiology of Stargardt’s disease. Ophthalmol Clin North Am 15:93–100, viii

    Google Scholar 

  • Haddad S, Chen CA, Santangelo SL et al (2006) The genetics of age-related macular degeneration: a review of progress to date. Surv Ophthalmol 51:316–363

    Article  PubMed  Google Scholar 

  • Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150

    Article  PubMed  CAS  Google Scholar 

  • Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809

    Article  PubMed  CAS  Google Scholar 

  • Huwiler A, Kolter T, Pfeilschifter J et al (2000) Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim Biophys Acta 1485:63–99

    PubMed  CAS  Google Scholar 

  • Kannan R, Jin M, Gamulescu MA et al (2004) Ceramide-induced apoptosis: role of catalase and hepatocyte growth factor. Free Radic Biol Med 37:166–175

    Article  PubMed  CAS  Google Scholar 

  • Martin RE, Elliott MH, Brush RS et al (2005) Detailed characterization of the lipid composition of detergent-resistant membranes from photoreceptor rod outer segment membranes. Invest Ophthalmol Vis Sci 46:1147–1154

    Article  PubMed  Google Scholar 

  • Obeid LM, Linardic CM, Karolak LA et al (1993) Programmed cell death induced by ceramide. Science 259:1769–1771

    Article  PubMed  CAS  Google Scholar 

  • Olivera A, Spiegel S (1993) Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365:557–560

    Article  PubMed  CAS  Google Scholar 

  • Portera-Cailliau C, Sung CH, Nathans J et al (1994) Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proc Natl Acad Sci USA 91:974–978

    Article  PubMed  CAS  Google Scholar 

  • Puranam K, Qian WH, Nikbakht K et al (1997) Upregulation of Bcl-2 and elevation of ceramide in Batten disease. Neuropediatrics 28:37–41

    Article  PubMed  CAS  Google Scholar 

  • Ranty ML, Carpentier S, Cournot M et al (2009) Ceramide production associated with retinal apoptosis after retinal detachment. Graefes Arch Clin Exp Ophthalmol 247:215–224

    Article  PubMed  CAS  Google Scholar 

  • Robb RM, Kuwabara T (1973) The ocular pathology of type A Niemann-Pick disease. A light and electron microscopic study. Invest Ophthalmol 12:366–377

    PubMed  CAS  Google Scholar 

  • Rotstein NP, Miranda GE, Abrahan CE et al (2010) Regulating survival and development in the retina: key roles for simple sphingolipids. J Lipid Res 51:1247–1262

    Article  PubMed  CAS  Google Scholar 

  • Sango K, Yamanaka S, Ajiki K et al (2008) Involvement of retinal neurons and pigment epithelial cells in a murine model of sandhoff disease. Ophthalmic Res 40:241–248

    Article  PubMed  Google Scholar 

  • Sanvicens N, Cotter TG (2006) Ceramide is the key mediator of oxidative stress-induced apoptosis in retinal photoreceptor cells. J Neurochem 98:1432–1444

    Article  PubMed  CAS  Google Scholar 

  • Seidova SF, Kotliar K, Foerger F et al (2009) Functional retinal changes in Gaucher disease. Doc Ophthalmol 118:151–154

    Article  PubMed  Google Scholar 

  • Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407

    Article  PubMed  CAS  Google Scholar 

  • Strettoi E, Gargini C, Novelli E et al (2010) Inhibition of ceramide biosynthesis preserves photoreceptor structure and function in a mouse model of retinitis pigmentosa. Proc Natl Acad Sci USA 107:18706–18711

    Article  PubMed  CAS  Google Scholar 

  • Tsui-Pierchala BA, Encinas M, Milbrandt J et al (2002) Lipid rafts in neuronal signaling and function. Trends Neurosci 25:412–417

    Article  PubMed  CAS  Google Scholar 

  • Tuson M, Marfany G, Gonzalez-Duarte R (2004) Mutation of CERKL, a novel human ceramide kinase gene, causes autosomal recessive retinitis pigmentosa (RP26). Am J Hum Genet 74:128–138

    Article  PubMed  CAS  Google Scholar 

  • Xiao Q, Yu K, Cui YY et al HC (2009) Dysregulation of human bestrophin-1 by ceramide-induced dephosphorylation. J Physiol 587:4379–4391

    Article  PubMed  CAS  Google Scholar 

  • Zarbin MA, Green WR, Moser HW et al (1985) Farber’s disease. Light and electron microscopic study of the eye. Arch Ophthalmol 103:73–80

    Article  PubMed  CAS  Google Scholar 

  • Zarbin MA, Green WR, Moser AB et al (1988) Increased levels of ceramide in the retina of a patient with Farber’s disease. Arch Ophthalmol 106:1163

    Article  PubMed  CAS  Google Scholar 

  • Zhu D, Sreekumar PG, Hinton DR et al (2010) Expression and regulation of enzymes in the ceramide metabolic pathway in human retinal pigment epithelial cells and their relevance to retinal degeneration. Vision Res 50:643–651

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our study is supported by NIH grants RR17703 and EY12190, Knight’s Templar Eye Foundation, and Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Nawajes A. Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Chen, H. et al. (2012). Ceramide Signaling in Retinal Degeneration. In: LaVail, M., Ash, J., Anderson, R., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 723. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0631-0_70

Download citation

Publish with us

Policies and ethics