Zebrafish: A Model System for the Investigation of Novel Treatments for Retinal Disease

  • Cheryl Y. Gregory-EvansEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 723)


Over the latter part of the twentieth century the zebrafish, Danio rerio, has emerged as a preeminent model system for studying developmental biology, physiology, toxicology, and disease. The key driver has been the genetic tractability of the zebrafish, enabling numerous mutant strains to become available for analysis. The large eyes and the optical transparency of zebrafish embryo make it especially suited for investigating diseases of the retina. Moreover, visual development is rapid and closely resembles that of human retina including an elaborate color visual system. With the ability to carry out high-throughput screens in vivo, this vertebrate model will likely emerge as a leader for the identification of novel drugs for the treatment of retinal disease.


Zebrafish Retinal disease Treatment Chemical mutagenesis Morpholino Transgenic Embryogenesis Eye development Small molecule screen 


  1. Amsterdam A, Nissen RM, Sun Z et al (2004) Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci USA 101:12792–12797PubMedCrossRefGoogle Scholar
  2. Asakawa K, Suster ML, Mizusawa K et al (2008) Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci USA 105:1255–1260PubMedCrossRefGoogle Scholar
  3. Brockerhoff SE, Hurley JB, Janssen-Bienhold U et al (1995) A behavioral screen for isolating zebrafish mutants with visual system defects. Proc Natl Acad Sci USA 92:10545–10549PubMedCrossRefGoogle Scholar
  4. Brockerhoff SE, Dowling JE, Hurley JB (1998) Zebrafish retinal mutants. Vision Res 38:1335–1339PubMedCrossRefGoogle Scholar
  5. Broughton RE, Milam JE, Roe BA (2001) The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA. Genome Res 11:1958–1967PubMedGoogle Scholar
  6. Davison JM, Akitake CM, Goll MG et al (2007) Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish. Dev Biol 304:811–824PubMedCrossRefGoogle Scholar
  7. Driever W, Solnica-Krezel L, Schier AF et al (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46PubMedGoogle Scholar
  8. Easter SS, Nicola GN (1996) The development of vision in the zebrafish (Danio rerio). Dev Biol 180:646–663PubMedCrossRefGoogle Scholar
  9. Fadool JM, Brockerhoff SE, Hyatt GA et al (1997) Mutations affecting eye morphology in the developing zebrafish (Danio rerio). Dev Genet 20:288–295PubMedCrossRefGoogle Scholar
  10. Gross JM, Perkins BD, Amsterdam A et al (2005) Identification of zebrafish insertional mutants with defects in visual system development and function. Genetics 170:245–261PubMedCrossRefGoogle Scholar
  11. Grunwald DJ, Streisinger G (1992) Induction of recessive lethal and specific locus mutations in the zebrafish with ethyl nitrosourea. Genet Res 59:103–116PubMedCrossRefGoogle Scholar
  12. Haffter P, Granato M, Brand M et al (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36PubMedGoogle Scholar
  13. Kimmel CB, Ballard WW, Kimmel SR et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310PubMedCrossRefGoogle Scholar
  14. Kitambi SS, McCulloch KJ, Peterson RT et al (2009) Small molecule screen for compounds that affect vascular development in the zebrafish retina. Mech Dev 126:464–477PubMedCrossRefGoogle Scholar
  15. Maddison LA, Lu J, Victoroff T et al (2009) A gain-of-function screen in zebrafish identifies a guanylate cyclase with a role in neuronal degeneration. Mol Genet Genomics 281:551–563PubMedCrossRefGoogle Scholar
  16. Malicki J, Neuhauss SC, Schier AF et al (1996) Mutations affecting development of the zebrafish retina. Development 123:263–273PubMedGoogle Scholar
  17. Maurer CM, Schönthaler HB, Mueller KP et al (2010) Distinct Retinal Deficits in a Zebrafish Pyruvate Dehydrogenase-Deficient Mutant. J Neurosci 30:11962–11972PubMedCrossRefGoogle Scholar
  18. Moosajee M, Gregory-Evans K, Ellis CD et al (2008) Translational bypass of nonsense mutations in zebrafish rep1, pax2.1 and lamb1 highlights a viable therapeutic option for untreatable genetic eye disease. Hum Mol Genet 17:3987–4000PubMedCrossRefGoogle Scholar
  19. Muto A, Orger MB, Wehman AM et al (2005) Forward genetic analysis of visual behavior in zebrafish. PLoS Genet 1:e66PubMedCrossRefGoogle Scholar
  20. Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216 –220PubMedCrossRefGoogle Scholar
  21. Neuhauss SC, Biehlmaier O, Seeliger MW et al (1999) Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish. J Neurosci 19:8603–8615PubMedGoogle Scholar
  22. Peterson RT, Shaw SY, Peterson TA, et al (2004) Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat Biotechnol 22:595–599PubMedCrossRefGoogle Scholar
  23. Robinson J, Schmitt EA, Hárosi FI et al (1993) Zebrafish ultraviolet visual pigment: absorption spectrum, sequence, and localization. Proc Natl Acad Sci USA 90:6009–6012PubMedCrossRefGoogle Scholar
  24. Schmitt EA, Dowling JE (1994) Early eye morphogenesis in the zebrafish, Brachydanio rerio. J Comp Neurol 344:532–542PubMedCrossRefGoogle Scholar
  25. Schmitt EA, Dowling JE (1999) Early retinal development in the zebrafish, Danio rerio: light and electron microscopic analyses. J Comp Neurol 404:515–536PubMedCrossRefGoogle Scholar
  26. Sprague J, Bayraktaroglu L, Clements D et al (2006) The Zebrafish Information Network: the zebrafish model organism database. Nucl Acids Res 34: Database issue D581–D585Google Scholar
  27. Streisinger G, Singer F, Walker C et al (1986) Segregation analyses and gene-centromere distances in zebrafish. Genetics 112:311–319PubMedGoogle Scholar
  28. Wagner A (1998) The fate of duplicated genes: loss or new function? Bioessays 20:785–788PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of OphthalmologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations