Advertisement

Relieving Bottlenecks in RNA Drug Discovery for Retinal Diseases

  • Jack M. Sullivan
  • Edwin H. Yau
  • R. Thomas Taggart
  • Mark C. Butler
  • Tiffany A. Kolniak
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 723)

Abstract

The development of efficacious and safe post transcriptional gene silencing (PTGS) agents is a challenging scientific endeavor that embraces “biocomplexity” at many levels. The target mRNA exhibits a level of structural complexity that profoundly limits annealing of PTGS agents. PTGS agents are macromolecular RNAs that must be designed to fold into catalytically active structures able to cleave the target mRNA. Pushing into and beyond the biological complexity requires new technologies for high throughput screening to efficiently and rapidly assess a set of biological and experimental variables engaged in RNA drug discovery.

Keywords

Retinal degenerations Macular degenerations Gene therapy Posttranscriptional gene silencing Ribozyme Hammerhead ribozyme shRNA siRNA High throughput screening Breakthrough technology development 

Notes

Acknowledgments

We thank the National Eye Institute (R01 EY13433, PI: Sullivan) (R24 EY016662, PI: M Slaughter), the Veterans Administration (Merit Grant 1I01BX000669-01), an Unrestricted grant from Research to Prevent Blindness, and a grant from the Oishei Foundation (Buffalo, NY).

References

  1. Abdelmaksoud H, Yau EH, Zuker M et al (2009) Development of lead hammerhead ribozyme candidates against human rod opsin for retinal degeneration therapy. Exp. Eye Res 88:859–879PubMedCrossRefGoogle Scholar
  2. Allawi HT, Dong F, Ip HS et al (2001) Mapping of RNA accessible sites by extension of random oligonucleotide libraries with reverse transcriptase. RNA 7:314–327PubMedCrossRefGoogle Scholar
  3. Boon CJF, den Hallander AI, Hoyng CB et al (2008) The spectrum of retinal dystrophies caused by mutations in the peripherin/RDS gene. Prog Ret Eye Res 27:213–225CrossRefGoogle Scholar
  4. Butler MC, Sullivan JM (2010) A novel real-time in vivo mouse retinal imaging system. Invest Ophthalmol Vis Sci 51:3103CrossRefGoogle Scholar
  5. Den Hollander AI, Black A, Bennet J et al (2010). Lighting a candle in the dark: advances in ­genetics and gene therapy of recessive retinal dystrophies. J Clin Invest 120: 3042–3053CrossRefGoogle Scholar
  6. Ding Y, Chan CY, Lawrence CE (2004) Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res 32 (supp):W135-W141Google Scholar
  7. Farjo R, Skaggs J, Quiambao AB et al (2006) Efficient non-viral ocular gene transfer with ­compacted DNA nanoparticles. PLoS One 1:e38PubMedCrossRefGoogle Scholar
  8. Flannery JG, Zolotukhin S, Vaquero MI et al (1997) Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus. Proc Natl Acad Sci U S A 94:6916–6921PubMedCrossRefGoogle Scholar
  9. Ho SP, Bao Y, Lesher T, Malhotra R et al (1998) Mapping of RNA accessible sites for antisense experiments with oligonucleotide libraries. Nat Biotechnol 16:56–63CrossRefGoogle Scholar
  10. Khvorova A, Lescoute A, Westhof E et al (2003) Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nature Struct Biol 10: 708–712PubMedCrossRefGoogle Scholar
  11. Koseki S, Tanabe T, Tani K et al (1999) Factors governing the activity in vivo of ribozymes ­transcribed by RNA polymerase III. J Virol 73:1868–1877PubMedGoogle Scholar
  12. Lieber A, Strauss M (1995) Selection of efficient cleavage sites in target mRNAs by using a ribozyme expression library. MolCell. Biol 15:540–551Google Scholar
  13. Mathews DH, Burkard ME, Freier SM et al (1999) Predicting oligonucleotide affinity to nucleic acid targets. RNA 5:1458–1469PubMedCrossRefGoogle Scholar
  14. Stage-Zimmermann TK, Uhlenbeck OC (1998) Hammerhead ribozyme kinetics. RNA 4:875–889PubMedCrossRefGoogle Scholar
  15. Sullivan JM, Taggart RT (2007) Novel and enhanced approaches to determined local mRNA ­accessibility. Invest Ophthalmol Vis Sci 48:4605CrossRefGoogle Scholar
  16. Yau EH, Sullivan JM (2007) High throughput cellular screening for ribozyme development against arbitrary mRNA targets. Invest Ophthalmol Vis Sci 48:1681Google Scholar
  17. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jack M. Sullivan
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  • Edwin H. Yau
    • 1
    • 2
  • R. Thomas Taggart
    • 1
  • Mark C. Butler
    • 1
  • Tiffany A. Kolniak
    • 1
    • 4
  1. 1.Department of OphthalmologyUniversity at Buffalo, State University of New York (SUNY), SUNY Eye InstituteBuffaloUSA
  2. 2.Department of Pharmacology and ToxicologyUniversity at Buffalo, State University of New York (SUNY), SUNY Eye InstituteBuffaloUSA
  3. 3.Department of Physiology and BiophysicsUniversity at Buffalo, State University of New York (SUNY), SUNY Eye InstituteBuffaloUSA
  4. 4.Department of Neuroscience ProgramUniversity at Buffalo, State University of New York (SUNY), SUNY Eye InstituteBuffaloUSA
  5. 5.VA Western New York Healthcare SystemBuffaloUSA
  6. 6.The Ross Eye Institute of University at BuffaloBuffaloUSA

Personalised recommendations