Therapeutic Approaches Utilising NKT Cells

  • Stephen R. Mattarollo
  • Mark J. Smyth
Part of the Cancer Drug Discovery and Development book series (CDD&D)


Natural killer T (NKT) cells are members of the immune armamentarium with profound immunoregulatory effects. They bridge the innate and adaptive immune systems, filling a niche in recognizing glycolipid antigens, and responding rapidly to prime subsequent immune responses. In cancer, type I NKT cells, defined by their semi-invariant T cell receptor (TCR) using Vα14Jα18 in mice and Vα24Jα18 in humans, are mostly host protective, by producing interferon-γ (IFN-γ) to activate and mature dendritic cells (DC) to make IL-12, which in turn activates NK and CD8+ T cells. In contrast, type II NKT cells, characterized by more diverse TCRs recognizing lipids presented by CD1d, primarily inhibited anti-tumor immunity. This chapter will discuss the impact of CD1d-restricted NKT cells in tumor immune surveillance and immunotherapy and highlight recent therapeutic approaches in tumor mouse models with a focus on harnessing the anti-tumor activities of NKT cells.


iNKT Cell CD1d Expression Tumor Immune Surveillance Established Subcutaneous Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



SRM was supported by a Balzan Foundation Post-doctoral Fellowship. MJS was supported by a National Health and Medical Research Council of Australia (NH&MRC) Australia Fellowship.


  1. Ambrosino, E., Berzofsky, J. A. and Terabe, M. (2008). Regulation of tumor immunity: the role of NKT cells. Expert Opin Biol Ther 8(6): 725–34.PubMedCrossRefGoogle Scholar
  2. Ambrosino, E., Terabe, M., Halder, R. C., et al. (2007). Cross-regulation between type I and type II NKT cells in regulating tumor immunity: a new immunoregulatory axis. J Immunol 179(8): 5126–36.PubMedGoogle Scholar
  3. Aymeric, L., Apetoh, L., Ghiringhelli, F., et al. (2010). Tumor cell death and ATP release prime dendritic cells and efficient anticancer immunity. Cancer Res 70(3): 855–8.PubMedCrossRefGoogle Scholar
  4. Bagnara, D., Ibatici, A., Corselli, M., et al. (2009). Adoptive immunotherapy mediated by ex vivo expanded natural killer T cells against CD1d-expressing lymphoid neoplasms. Haematologica 94(7): 967–75.PubMedCrossRefGoogle Scholar
  5. Barral, P., Eckl-Dorna, J., Harwood, N. E., et al. (2008). B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help in vivo. Proc Natl Acad Sci USA 105(24): 8345–50.PubMedCrossRefGoogle Scholar
  6. Bellone, M., Ceccon, M., Grioni, M., et al. (2010). iNKT cells control mouse spontaneous carcinoma independently of tumor-specific cytotoxic T cells. PLoS One 5(1): e8646.PubMedCrossRefGoogle Scholar
  7. Berzofsky, J. A. and Terabe, M. (2008). NKT cells in tumor immunity: opposing subsets define a new immunoregulatory axis. J Immunol 180(6): 3627–35.PubMedGoogle Scholar
  8. Bezbradica, J. S., Stanic, A. K., Matsuki, N., et al. (2005). Distinct Roles of Dendritic Cells and B Cells in Va14Ja18 Natural T Cell Activation In Vivo. J Immunol 174(8): 4696–705.PubMedGoogle Scholar
  9. Burdin, N., Brossay, L. and Kronenberg, M. (1999). Immunization with alpha-galactosylceramide polarizes CD1-reactive NK T cells towards Th2 cytokine synthesis. European Journal of Immunology 29(6): 2014–25.PubMedCrossRefGoogle Scholar
  10. Cabaniols, J. P., Fazilleau, N., Casrouge, A., et al. (2001). Most alpha/beta T cell receptor diversity is due to terminal deoxynucleotidyl transferase. J Exp Med 194(9): 1385–90.PubMedCrossRefGoogle Scholar
  11. Cardell, S., Tangri, S., Chan, S., et al. (1995). CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice. J Exp Med 182(4): 993–1004.PubMedCrossRefGoogle Scholar
  12. Chang, D. H., Osman, K., Connolly, J., et al. (2005). Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med 201(9): 1503–17.PubMedCrossRefGoogle Scholar
  13. Chiu, Y. H., Jayawardena, J., Weiss, A., et al. (1999). Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J Exp Med 189(1): 103–10.PubMedCrossRefGoogle Scholar
  14. Chung, Y., Chang, W. S., Kim, S., et al. (2004). NKT cell ligand alpha-galactosylceramide blocks the induction of oral tolerance by triggering dendritic cell maturation. Eur J Immunol 34(9): 2471–9.PubMedCrossRefGoogle Scholar
  15. Chung, Y., Qin, H., Kang, C. Y., et al. (2007). An NKT-mediated autologous vaccine generates CD4 T cell-dependent potent anti-lymphoma immunity. Blood 110(6): 2013–9.PubMedCrossRefGoogle Scholar
  16. Coquet, J. M., Chakravarti, S., Kyparissoudis, K., et al. (2008). Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1- NKT cell population. Proc Natl Acad Sci USA 105(32): 11287–92.PubMedCrossRefGoogle Scholar
  17. Crowe, N. Y., Coquet, J. M., Berzins, S. P., et al. (2005). Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med 202(9): 1279–88.PubMedCrossRefGoogle Scholar
  18. Crowe, N. Y., Smyth, M. J. and Godfrey, D. I. (2002). A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. Journal of Experimental Medicine 196(1): 119–27.PubMedCrossRefGoogle Scholar
  19. Crowe, N. Y., Uldrich, A. P., Kyparissoudis, K., et al. (2003). Glycolipid Antigen Drives Rapid Expansion and Sustained Cytokine Production by NK T Cells. J Immunol 171(8): 4020–27.PubMedGoogle Scholar
  20. Demaria, S., Bhardwaj, N., McBride, W. H., et al. (2005). Combining radiotherapy and immunotherapy: a revived partnership. Int J Radiat Oncol Biol Phys 63(3): 655–66.PubMedCrossRefGoogle Scholar
  21. Dhodapkar, M. V., Geller, M. D., Chang, D. H., et al. (2003). A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med 197(12): 1667–76.PubMedCrossRefGoogle Scholar
  22. Dunn, G. P., Bruce, A. T., Ikeda, H., et al. (2002). Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11): 991–8.PubMedCrossRefGoogle Scholar
  23. Dunn, G. P., Old, L. J. and Schreiber, R. D. (2004). The three Es of cancer immunoediting. Annu Rev Immunol 22: 329–60.PubMedCrossRefGoogle Scholar
  24. Fujii, S., Shimizu, K., Klimek, V., et al. (2003a). Severe and selective deficiency of interferon-gamma-producing invariant natural killer T cells in patients with myelodysplastic syndromes. Br J Haematol 122(4): 617–22.PubMedCrossRefGoogle Scholar
  25. Fujii, S., Shimizu, K., Kronenberg, M., et al. (2002). Prolonged IFN-gamma-producing NKT response induced with alpha-galactosylceramide-loaded DCs. Nature Immunology 3(9): 867–74.PubMedCrossRefGoogle Scholar
  26. Fujii, S., Shimizu, K., Smith, C., et al. (2003b). Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med 198(2): 267–79.PubMedCrossRefGoogle Scholar
  27. Fujii, S., Shimizu, K., Steinman, R. M., et al. (2003c). Detection and activation of human Valpha24+ natural killer T cells using alpha-galactosyl ceramide-pulsed dendritic cells. J Immunol Methods 272(1–2): 147–59.PubMedCrossRefGoogle Scholar
  28. Galli, G., Nuti, S., Tavarini, S., et al. (2003). CD1d-restricted help to B cells by human invariant natural killer T lymphocytes. J Exp Med 197(8): 1051–7.PubMedCrossRefGoogle Scholar
  29. Galli, G., Pittoni, P., Tonti, E., et al. (2007). Invariant NKT cells sustain specific B cell responses and memory. Proc Natl Acad Sci USA 104(10): 3984–9.PubMedCrossRefGoogle Scholar
  30. Godfrey, D. I., MacDonald, H. R., Kronenberg, M., et al. (2004). NKT cells: what’s in a name? Nat Rev Immunol 4(3): 231–7.PubMedCrossRefGoogle Scholar
  31. Godfrey, D. I., Stankovic, S. and Baxter, A. G. (2010). Raising the NKT cell family. Nat Immunol 11(3): 197–206.PubMedCrossRefGoogle Scholar
  32. Harada, M., Seino, K., Wakao, H., et al. (2004). Down-regulation of the invariant Valpha14 antigen receptor in NKT cells upon activation. Int Immunol 16(2): 241–7.PubMedCrossRefGoogle Scholar
  33. Hayakawa, Y., Godfrey, D. I. and Smyth, M. J. (2004). Alpha-galactosylceramide: potential immunomodulatory activity and future application. Curr Med Chem 11(2): 241–52.PubMedCrossRefGoogle Scholar
  34. Hayakawa, Y., Rovero, S., Forni, G., et al. (2003). Alpha-galactosylceramide (KRN7000) suppression of chemical- and oncogene-dependent carcinogenesis. Proc Natl Acad Sci USA 100(16): 9464–9.PubMedCrossRefGoogle Scholar
  35. Hayakawa, Y., Takeda, K., Yagita, H., et al. (2002). IFN-gamma-mediated inhibition of tumor angiogenesis by natural killer T-cell ligand, alpha-galactosylceramide. Blood 100(5): 1728–33.PubMedGoogle Scholar
  36. Haynes, N. M., van der Most, R. G., Lake, R. A., et al. (2008). Immunogenic anti-cancer chemotherapy as an emerging concept. Curr Opin Immunol 20(5): 545–57.PubMedCrossRefGoogle Scholar
  37. Hermans, I. F., Silk, J. D., Gileadi, U., et al. (2007). Dendritic Cell Function Can Be Modulated through Cooperative Actions of TLR Ligands and Invariant NKT Cells. J Immunol 178(5): 2721–9.PubMedGoogle Scholar
  38. Hermans, I. F., Silk, J. D., Gileadi, U., et al. (2003). NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol 171(10): 5140–7.PubMedGoogle Scholar
  39. Hong, C., Lee, H., Park, Y. K., et al. (2009). Regulation of secondary antigen-specific CD8(+) T-cell responses by natural killer T cells. Cancer Res 69(10): 4301–8.PubMedCrossRefGoogle Scholar
  40. Ishikawa, A., Motohashi, S., Ishikawa, E., et al. (2005). A phase I study of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 11(5): 1910–7.PubMedCrossRefGoogle Scholar
  41. Kamijuku, H., Nagata, Y., Jiang, X., et al. (2008). Mechanism of NKT cell activation by intranasal coadministration of alpha-galactosylceramide, which can induce cross-protection against influenza viruses. Mucosal Immunol 1(3): 208–18.PubMedCrossRefGoogle Scholar
  42. Ko, S. Y., Ko, H. J., Chang, W. S., et al. (2005). {alpha}-Galactosylceramide Can Act As a Nasal Vaccine Adjuvant Inducing Protective Immune Responses against Viral Infection and Tumor. J Immunol 175(5): 3309–17.PubMedGoogle Scholar
  43. Kunii, N., Horiguchi, S., Motohashi, S., et al. (2009). Combination therapy of in vitro-expanded natural killer T cells and alpha-galactosylceramide-pulsed antigen-presenting cells in patients with recurrent head and neck carcinoma. Cancer Sci 100(6): 1092–8.PubMedCrossRefGoogle Scholar
  44. Lake, R. A. and Robinson, B. W. (2005). Immunotherapy and chemotherapy--a practical partnership. Nat Rev Cancer 5(5): 397–405.PubMedCrossRefGoogle Scholar
  45. Leadbetter, E. A., Brigl, M., Illarionov, P., et al. (2008). NK T cells provide lipid antigen-specific cognate help for B cells. Proc Natl Acad Sci USA 105(24): 8339–44.PubMedCrossRefGoogle Scholar
  46. Lin, H., Nieda, M. and Nicol, A. J. (2004). Differential proliferative response of NKT cell subpopulations to in vitro stimulation in presence of different cytokines. Eur J Immunol 34(10): 2664.PubMedCrossRefGoogle Scholar
  47. Liu, K., Idoyaga, J., Charalambous, A., et al. (2005). Innate NKT lymphocytes confer superior adaptive immunity via tumor-capturing dendritic cells. J Exp Med 202(11): 1507–16.PubMedCrossRefGoogle Scholar
  48. Matsuda, J. L., Mallevaey, T., Scott-Browne, J., et al. (2008). CD1d-restricted iNKT cells, the ‘Swiss-Army knife’ of the immune system. Curr Opin Immunol 20(8): 358–68.PubMedCrossRefGoogle Scholar
  49. Matsui, K., Yoshimoto, T., Tsutsui, H., et al. (1997). Propionibacterium acnes treatment diminishes CD4+ NK1.1+ T cells but induces type I T cells in the liver by induction of IL-12 and IL-18 production from Kupffer cells. J Immunol 159: 97–106.PubMedCrossRefGoogle Scholar
  50. Mattarollo, S. R., Kenna, T., Nieda, M., et al. (2006). Chemotherapy pretreatment sensitizes solid tumor-derived cell lines to Valpha24(+) NKT cell-mediated cytotoxicity. Int J Cancer 119(7): 1630–7.PubMedCrossRefGoogle Scholar
  51. McCarthy, C., Shepherd, D., Fleire, S., et al. (2007). The length of lipids bound to human CD1d molecules modulates the affinity of NKT cell TCR and the threshold of NKT cell activation. J Exp Med 204(5): 1131–44.PubMedCrossRefGoogle Scholar
  52. Miyamoto, K., Miyake, S. and Yamamura, T. (2001). A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing T(H)2 bias of natural killer T cells. Nature 413(6855): 531–34.PubMedCrossRefGoogle Scholar
  53. Molling, J. W., Langius, J. A., Langendijk, J. A., et al. (2007). Low levels of circulating invariant natural killer T cells predict poor clinical outcome in patients with head and neck squamous cell carcinoma. J Clin Oncol 25(7): 862–8.PubMedCrossRefGoogle Scholar
  54. Molling, J. W., Moreno, M., de Groot, J., et al. (2008). Chronically stimulated mouse invariant NKT cell lines have a preserved capacity to enhance protection against experimental tumor metastases. Immunol Lett 118(1): 36–43.PubMedCrossRefGoogle Scholar
  55. Moodycliffe, A. M., Nghiem, D., Clydesdale, G., et al. (2000). Immune suppression and skin cancer development: regulation by NKT cells. Nat Immunol 1(6): 521–5.PubMedCrossRefGoogle Scholar
  56. Motohashi, S., Ishikawa, A., Ishikawa, E., et al. (2006). A phase I study of in vitro expanded natural killer T cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 12(20 Pt 1): 6079–86.PubMedCrossRefGoogle Scholar
  57. Nakagawa, R., Motoki, K., Nakamura, H., et al. (1998a). Antitumor activity of alpha-­galactosylceramide, KRN7000, in mice with EL-4 hepatic metastasis and its cytokine production. Oncology Research 10(11–12): 561–68.PubMedGoogle Scholar
  58. Nakagawa, R., Motoki, K., Ueno, H., et al. (1998b). Treatment of hepatic metastasis of the colon26 adenocarcinoma with an alpha-galactosylceramide, KRN7000. Cancer Res 58(6): 1202–7.PubMedGoogle Scholar
  59. Nieda, M., Okai, M., Tazbirkova, A., et al. (2004). Therapeutic activation of V{alpha}24  +  V{beta}11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103(2): 383–89.PubMedCrossRefGoogle Scholar
  60. Nishi, N., van der Vliet, H. J. J., Koezuka, Y., et al. (2000). Synergistic effect of KRN7000 with interleukin-15,-7, and-2 on the expansion of human V alpha 24(+)V beta 11(+) T cells in vitro. Human Immunology 61(4): 357–65.PubMedCrossRefGoogle Scholar
  61. Nishikawa, H., Kato, T., Tanida, K., et al. (2003). CD4+ CD25+ T cells responding to serologically defined autoantigens suppress antitumor immune responses. Proc Natl Acad Sci USA 100(19): 10902–6.PubMedCrossRefGoogle Scholar
  62. Parekh, V. V., Wilson, M. T., Olivares-Villagomez, D., et al. (2005). Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest 115(9): 2572–83.PubMedCrossRefGoogle Scholar
  63. Park, J. M., Terabe, M., Donaldson, D. D., et al. (2008). Natural immunosurveillance against spontaneous, autochthonous breast cancers revealed and enhanced by blockade of IL-13-mediated negative regulation. Cancer Immunol Immunother 57(6): 907–12.PubMedCrossRefGoogle Scholar
  64. Park, S. H., Weiss, A., Benlagha, K., et al. (2001). The mouse CD1d-restricted repertoire is dominated by a few autoreactive T cell receptor families. J Exp Med 193(8): 893–904.PubMedCrossRefGoogle Scholar
  65. Petersen, T. R., Sika-Paotonu, D., Knight, D. A., et al. (2010). Potent anti-tumor responses to immunization with dendritic cells loaded with tumor tissue and an NKT cell ligand. Immunol Cell Biol doi: 10.1038/icb.2010.9.
  66. Renukaradhya, G. J., Khan, M. A., Vieira, M., et al. (2008). Type I NKT cells protect (and Type II NKT cells suppress) the host’s innate antitumor immune response to a B cell lymphoma. Blood 111(12): 5637–45.PubMedCrossRefGoogle Scholar
  67. Schmieg, J., Yang, G., Franck, R. W., et al. (2003). Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-Galactosylceramide. J Exp Med 198(11): 1631–41.PubMedCrossRefGoogle Scholar
  68. Schmieg, J., Yang, G., Franck, R. W., et al. (2005). Glycolipid presentation to natural killer T cells differs in an organ-dependent fashion. Proc Natl Acad Sci USA 102(4): 1127–32.PubMedCrossRefGoogle Scholar
  69. Sfondrini, L., Besusso, D., Zoia, M. T., et al. (2002). Absence of the CD1 molecule up-regulates antitumor activity induced by CpG oligodeoxynucleotides in mice. Journal of Immunology 169(1): 151–58.Google Scholar
  70. Shimizu, K., Goto, A., Fukui, M., et al. (2007a). Tumor Cells Loaded with {alpha}-Galactosylceramide Induce Innate NKT and NK Cell-Dependent Resistance to Tumor Implantation in Mice. J Immunol 178(5): 2853–61.PubMedGoogle Scholar
  71. Shimizu, K., Kurosawa, Y., Taniguchi, M., et al. (2007b). Cross-presentation of glycolipid from tumor cells loaded with {alpha}-galactosylceramide leads to potent and long-lived T cell mediated immunity via dendritic cells. J Exp Med 204(11): 2641–53.PubMedCrossRefGoogle Scholar
  72. Shin, Y., Hong, C., Lee, H., et al. (2010). NKT Cell-Dependent Regulation of Secondary Antigen-Specific, Conventional CD4+ T Cell Immune Responses. J Immunol doi: 10.4049/jimmunol.0903121.
  73. Silk, J. D., Hermans, I. F., Gileadi, U., et al. (2004). Utilizing the adjuvant properties of CD1d-dependent NK T cells in T cell-mediated immunotherapy. J Clin Invest 114(12): 1800–11.PubMedGoogle Scholar
  74. Silk, J. D., Salio, M., Reddy, B. G., et al. (2008). Cutting edge: nonglycosidic CD1d lipid ligands activate human and murine invariant NKT cells. J Immunol 180(10): 6452–6.PubMedGoogle Scholar
  75. Smyth, M. J., Cretney, E., Takeda, K., et al. (2001). Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon gamma-dependent natural killer cell protection from tumor metastasis. Journal of Experimental Medicine 193(6): 661–70.PubMedCrossRefGoogle Scholar
  76. Smyth, M. J., Crowe, N. Y., Pellicci, D. G., et al. (2002). Sequential production of interferon-gamma by NK1.1(+) T cells and natural killer cells is essential for the antimetastatic effect of alpha-galactosylceramide. Blood 99(4): 1259–66.PubMedCrossRefGoogle Scholar
  77. Smyth, M. J., Swann, J. and Hayakawa, Y. (2007). Innate tumor immune surveillance. Adv Exp Med Biol 590: 103–11.PubMedCrossRefGoogle Scholar
  78. Smyth, M. J., Thia, K. Y. T., Street, S. E. A., et al. (2000). Differential tumor surveillance by natural killer (NK) and NKT cells. Journal of Experimental Medicine 191(4): 661–68.PubMedCrossRefGoogle Scholar
  79. Song, W., van der Vliet, H. J., Tai, Y. T., et al. (2008). Generation of antitumor invariant natural killer T cell lines in multiple myeloma and promotion of their functions via lenalidomide: a strategy for immunotherapy. Clin Cancer Res 14(21): 6955–62.PubMedCrossRefGoogle Scholar
  80. Swann, J. B. and Smyth, M. J. (2007). Immune surveillance of tumors. J Clin Invest 117(5): 1137–46.PubMedCrossRefGoogle Scholar
  81. Swann, J. B., Uldrich, A. P., van Dommelen, S., et al. (2009). Type I NKT cells suppress tumors in mice caused by p53 loss. Blood 113(25): 6382–5.PubMedCrossRefGoogle Scholar
  82. Tachibana, T., Onodera, H., Tsuruyama, T., et al. (2005). Increased Intratumor V{alpha}24-Positive Natural Killer T Cells: A Prognostic Factor for Primary Colorectal Carcinomas. Clin Cancer Res 11(20): 7322–7.PubMedCrossRefGoogle Scholar
  83. Teng, M. W., Sharkey, J., McLaughlin, N. M., et al. (2009a). CD1d-based combination therapy eradicates established tumors in mice. J Immunol 183(3): 1911–20.PubMedCrossRefGoogle Scholar
  84. Teng, M. W., Westwood, J. A., Darcy, P. K., et al. (2007). Combined natural killer T-cell based immunotherapy eradicates established tumors in mice. Cancer Res 67(15): 7495–504.PubMedCrossRefGoogle Scholar
  85. Teng, M. W., Yue, S., Sharkey, J., et al. (2009b). CD1d activation and blockade: a new antitumor strategy. J Immunol 182(6): 3366–71.PubMedCrossRefGoogle Scholar
  86. Terabe, M. and Berzofsky, J. A. (2007). NKT cells in immunoregulation of tumor immunity: a new immunoregulatory axis. Trends Immunol 28: 491–96.PubMedCrossRefGoogle Scholar
  87. Terabe, M., Khanna, C., Bose, S., et al. (2006). CD1d-restricted natural killer T cells can down-regulate tumor immunosurveillance independent of interleukin-4 receptor-signal transducer and activator of transcription 6 or transforming growth factor-beta. Cancer Res 66(7): 3869–75.PubMedCrossRefGoogle Scholar
  88. Terabe, M., Matsui, S., Noben-Trauth, N., et al. (2000). NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nature Immunology 1(6): 515–20.PubMedCrossRefGoogle Scholar
  89. Terabe, M., Swann, J., Ambrosino, E., et al. (2005). A nonclassical non-V{alpha}14 J{alpha}18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J Exp Med 202(12): 1627–33.PubMedCrossRefGoogle Scholar
  90. Toura, I., Kawano, T., Akutsu, Y., et al. (1999). Cutting edge: Inhibition of experimental tumor metastasis by dendritic cells pulsed with alpha-galactosylceramide. Journal of Immunology 163(5): 2387–91.Google Scholar
  91. Uldrich, A. P., Crowe, N. Y., Kyparissoudis, K., et al. (2005). NKT cell stimulation with glycolipid antigen in vivo: costimulation-dependent expansion, bim-dependent contraction, and hyporesponsiveness to further antigenic challenge. J Immunol 175(5): 3092–101.PubMedGoogle Scholar
  92. Uno, T., Takeda, K., Kojima, Y., et al. (2006). Eradication of established tumors in mice by a combination antibody-based therapy. Nat Med 12(6): 693–8.PubMedCrossRefGoogle Scholar
  93. van der Most, R. G., Currie, A., Robinson, B. W., et al. (2006). Cranking the immunologic engine with chemotherapy: using context to drive tumor antigen cross-presentation towards useful antitumor immunity. Cancer Res 66(2): 601–4.PubMedCrossRefGoogle Scholar
  94. van der Vliet, H. J., Nishi, N., Koezuka, Y., et al. (2001a). Potent expansion of human natural killer T cells using alpha-galactosylceramide (KRN7000)-loaded monocyte-derived dendritic cells, cultured in the presence of IL-7 and IL-15. J Immunol Methods 247(1–2): 61–72.PubMedCrossRefGoogle Scholar
  95. van der Vliet, H. J. J., Nishi, N., Koezuka, Y., et al. (2001b). Potent expansion of human natural killer T cells using alpha-galactosylceramide (KRN7000)-loaded monocyte-derived dendritic cells, cultured in the presence of IL-7 and IL-15. Journal of Immunological Methods 247(1–2): 61–72.PubMedCrossRefGoogle Scholar
  96. Vonderheide, R. H., Dutcher, J. P., Anderson, J. E., et al. (2001). Phase I study of recombinant human CD40 ligand in cancer patients. J Clin Oncol 19(13): 3280–7.PubMedGoogle Scholar
  97. Vonderheide, R. H., Flaherty, K. T., Khalil, M., et al. (2007). Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol 25(7): 876–83.PubMedCrossRefGoogle Scholar
  98. Wilson, M. T., Johansson, C., Olivares-Villagomez, D., et al. (2003). The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proc Natl Acad Sci USA 100(19): 10913–8.PubMedCrossRefGoogle Scholar
  99. Yu, K. O., Im, J. S., Molano, A., et al. (2005). Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of {alpha}-galactosylceramides. Proc Natl Acad Sci USA 102(9): 3383–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Cancer Immunology Program, Peter MacCallum Cancer CentreVictoriaAustralia
  2. 2.Immunology, and Metabolic MedicineThe University of Queensland Diamantina Institute for CancerWoolloongabbaAustralia
  3. 3.Cancer Immunology Program, Peter MacCallum Cancer CentreVictoriaAustralia

Personalised recommendations