Skip to main content

Structure and Recognition of Antigens for Invariant NKT Cells

  • Chapter
  • First Online:
Natural Killer T cells

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1071 Accesses

Abstract

It has been two decades since natural killer T (NKT) cells were ­identified and distinguished from conventional T cell populations by the invariant Vα14 rearrangement in their T cell antigen receptor (TCR). NKT cells recognize lipid antigens presented by CD1d, a member of a third family of antigen-presenting ­molecules. The first antigen known to activate NKT cells is a α-galactosyl ceramide (αGalCer), a highly potent synthetic glycosphingolipid (GSL) antigen closely related to a natural product, probably derived from a bacteria. Synthetic antigens related to αGalCer are being developed for clinical applications, and there is great interesting understanding why different variants cause different cytokine responses. Microbial glycosphingolipid antigens for NKT cells have been found in environmental microbes and also in pathogens such as Borrelia burgdorferi. For the microbial and synthetic antigens, when the TCR binds, it forces the sugar and CD1d into a fixed orientation. Self-antigens for NKT cells also have been defined, but these have diverse structures and it remains controversial if there is a single type of self-agonist responsible for the selection and peripheral activation of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bacon RM, Kugeler KJ, and Mead PS (2008) Surveillance for Lyme disease-United States, 1992–2006. MMWR Surveill Summ 57:1–9

    PubMed  Google Scholar 

  • Bai L, Sagiv Y, Liu Y et al (2009) Lysosomal recycling terminates CD1d-mediated presentation of short and polyunsaturated variants of the NKT cell lipid antigen alphaGalCer. Proc Natl Acad Sci USA 106:10254–10259

    PubMed  CAS  Google Scholar 

  • Belperron AA, Dailey CM, and Bockenstedt LK (2005) Infection-induced marginal zone B cell production of Borrelia hermsii-specific antibody is impaired in the absence of CD1d. J Immunol 174:5681–5686

    PubMed  CAS  Google Scholar 

  • Ben-Menachem G, Kubler-Kielb J, Coxon B et al (2003) A newly discovered cholesteryl galactoside from Borrelia burgdorferi. Proc Natl Acad Sci USA 100:7913–7918

    PubMed  CAS  Google Scholar 

  • Bendelac A, Savage PB, and Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25:297–336

    PubMed  CAS  Google Scholar 

  • Borg NA, Wun KS, Kjer-Nielsen L et al (2007) CD1d-lipid-antigen recognition by the semi-­invariant NKT T-cell receptor. Nature 448:44–49

    PubMed  CAS  Google Scholar 

  • Brigl M, and Brenner MB (2004) CD1: antigen presentation and T cell function. Annu Rev Immunol 22:817–890

    PubMed  CAS  Google Scholar 

  • Brigl M, Bry L, Kent SC et al (2003) Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 4:1230–1237

    PubMed  CAS  Google Scholar 

  • Brossay L, Naidenko O, Burdin N et al (1998) Structural requirements for galactosylceramide recognition by CD1-restricted NK T cells. J Immunol 161:5124–5128

    PubMed  CAS  Google Scholar 

  • Burdin N, Brossay L, Degano M et al (2000) Structural requirements for antigen presentation by mouse CD1. Proc Natl Acad Sci USA 97:10156–10161

    PubMed  CAS  Google Scholar 

  • Carnaud C, Lee D, Donnars O et al (1999) Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 163:4647–4650

    PubMed  CAS  Google Scholar 

  • Chang YJ, Kim HY, Albacker LA et al (2011) Influenza infection in suckling mice expands an NKT cell subset that protects against airway hyperreactivity. J Clin Invest 121:57–69

    PubMed  CAS  Google Scholar 

  • Chen W, Xia C, Wang J et al (2007a) Synthesis and structure-activity relationship study of isoglobotrihexosylceramide analogues. J Org Chem 72:9914–9923

    PubMed  CAS  Google Scholar 

  • Chen X, Wang X, Keaton JM et al (2007b) Distinct endosomal trafficking requirements for presentation of autoantigens and exogenous lipids by human CD1d molecules. J Immunol 178:6181–6190

    PubMed  CAS  Google Scholar 

  • Christiansen D, Milland J, Mouhtouris E et al (2008) Humans lack iGb3 due to the absence of functional iGb3-synthase: implications for NKT cell development and transplantation. PLoS Biol 6:e172

    PubMed  Google Scholar 

  • Cohen NR, Garg S, and Brenner MB (2009) Antigen Presentation by CD1 Lipids, T Cells, and NKT Cells in Microbial Immunity. Adv Immunol 102:1–94

    PubMed  CAS  Google Scholar 

  • Cox D, Fox L, Tian R et al (2009) Determination of cellular lipids bound to human CD1d molecules. PLoS One 4:e5325

    PubMed  Google Scholar 

  • Cui J, Shin T, Kawano T et al (1997) Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science 278:1623–1626

    PubMed  CAS  Google Scholar 

  • Darmoise A, Teneberg S, Bouzonville L et al (2010) Lysosomal alpha-galactosidase controls the generation of self lipid antigens for natural killer T cells. Immunity 33:216–228

    PubMed  CAS  Google Scholar 

  • de la Salle H, Mariotti S, Angenieux C et al (2005) Assistance of microbial glycolipid antigen processing by CD1e. Science 310:1321–1324

    PubMed  Google Scholar 

  • De Libero G, Collmann A, and Mori L (2009) The cellular and biochemical rules of lipid antigen presentation. Eur J Immunol 39:2648–2656

    PubMed  Google Scholar 

  • Dellabona P, Padovan E, Casorati G et al (1994) An invariant V alpha 24-J alpha Q/V beta 11 T cell receptor is expressed in all individuals by clonally expanded CD4-8- T cells. J Exp Med 180:1171–1176

    PubMed  CAS  Google Scholar 

  • Eberl G, and MacDonald HR (2000) Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur J Immunol 30:985–992

    PubMed  CAS  Google Scholar 

  • Fischer K, Scotet E, Niemeyer M et al (2004) Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc Natl Acad Sci USA 101:10685–10690

    PubMed  CAS  Google Scholar 

  • Fox LM, Cox DG, Lockridge JL et al (2009) Recognition of lyso-phospholipids by human natural killer T lymphocytes. PLoS Biol 7:e1000228

    PubMed  Google Scholar 

  • Gadola SD, Koch M, Marles-Wright J et al (2006a) Structure and binding kinetics of three different human CD1d-alpha-galactosylceramide-specific T cell receptors. J Exp Med 203:699–710

    PubMed  CAS  Google Scholar 

  • Gadola SD, Silk JD, Jeans A et al (2006b) Impaired selection of invariant natural killer T cells in diverse mouse models of glycosphingolipid lysosomal storage diseases. J Exp Med 203:2293–2303

    PubMed  CAS  Google Scholar 

  • Gapin L (2010) iNKT cell autoreactivity: what is ‘self’ and how is it recognized? Nat Rev Immunol 10:272–277

    PubMed  CAS  Google Scholar 

  • Giabbai B, Sidobre S, Crispin MD et al (2005) Crystal structure of mouse CD1d bound to the self ligand phosphatidylcholine: a molecular basis for NKT cell activation. J Immunol 175:977–984

    PubMed  CAS  Google Scholar 

  • Godfrey DI, and Berzins SP (2007) Control points in NKT-cell development. Nat Rev Immunol 7:505–518

    PubMed  CAS  Google Scholar 

  • Godfrey DI, MacDonald HR, Kronenberg M et al (2004) NKT cells: what’s in a name? Nat Rev Immunol 4:231–237

    PubMed  CAS  Google Scholar 

  • Goff RD, Gao Y, Mattner J et al (2004) Effects of lipid chain lengths in alpha-galactosylceramides on cytokine release by natural killer T cells. J Am Chem Soc 126:13602–13603

    PubMed  CAS  Google Scholar 

  • Gumperz JE, and Brenner MB (2001) CD1-specific T cells in microbial immunity. Curr Opin Immunol 13:471–478

    PubMed  CAS  Google Scholar 

  • Gumperz JE, Roy C, Makowska A et al (2000) Murine CD1d-restricted T cell recognition of ­cellular lipids. Immunity 12:211–221

    PubMed  CAS  Google Scholar 

  • Hossain H, Wellensiek HJ, Geyer R et al (2001) Structural analysis of glycolipids from Borrelia burgdorferi. Biochimie 83:683–692

    PubMed  CAS  Google Scholar 

  • Hsueh PR, Teng LJ, Yang PC et al (1998) Nosocomial infections caused by Sphingomonas paucimobilis: clinical features and microbiological characteristics. Clin Infect Dis 26:676–681

    PubMed  CAS  Google Scholar 

  • Im JS, Arora P, Bricard G et al (2009) Kinetics and cellular site of glycolipid loading control the outcome of natural killer T cell activation. Immunity 30:888–898

    PubMed  CAS  Google Scholar 

  • Joyce S, Woods AS, Yewdell JW et al (1998) Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol. Science 279:1541–1544

    PubMed  CAS  Google Scholar 

  • Kamada N, Iijima H, Kimura K et al (2001) Crucial amino acid residues of mouse CD1d for glycolipid ligand presentation to V(alpha)14 NKT cells. Int Immunol 13:853–861

    PubMed  CAS  Google Scholar 

  • Kawahara K, Lindner B, Isshiki Y et al (2001) Structural analysis of a new glycosphingolipid from the lipopolysaccharide-lacking bacterium Sphingomonas adhaesiva. Carbohydr Res 333:87–93

    PubMed  CAS  Google Scholar 

  • Kawahara K, Moll H, Knirel YA et al (2000) Structural analysis of two glycosphingolipids from the lipopolysaccharide-lacking bacterium Sphingomonas capsulata. Eur J Biochem 267:1837–1846

    PubMed  CAS  Google Scholar 

  • Kawahara K, Sato N, Tsuge K et al (2006) Confirmation of the anomeric structure of galacturonic acid in the galacturonosyl-ceramide of Sphingomonas yanoikuyae. Microbiol Immunol 50:67–71

    PubMed  CAS  Google Scholar 

  • Kawano T, Cui J, Koezuka Y et al (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278:1626–1629

    PubMed  CAS  Google Scholar 

  • Kinjo Y, Pei B, Bufali S et al (2008) Natural Sphingomonas glycolipids vary greatly in their ability to activate natural killer T cells. Chem Biol 15:654–664

    PubMed  CAS  Google Scholar 

  • Kinjo Y, Tupin E, Wu D et al (2006) Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol 7:978–986

    PubMed  CAS  Google Scholar 

  • Kinjo Y, Wu D, Kim G et al (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434:520–525

    PubMed  CAS  Google Scholar 

  • Kjer-Nielsen L, Borg NA, Pellicci DG et al (2006) A structural basis for selection and cross-species reactivity of the semi-invariant NKT cell receptor in CD1d/glycolipid recognition. J Exp Med 203:661–673

    PubMed  CAS  Google Scholar 

  • Kronenberg M (2005) Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 23:877–900

    PubMed  CAS  Google Scholar 

  • Kumar H, Belperron A, Barthold SW et al (2000) Cutting edge: CD1d deficiency impairs murine host defense against the spirochete, Borrelia burgdorferi. J Immunol 165:4797–4801

    PubMed  CAS  Google Scholar 

  • Kunii N, Horiguchi S, Motohashi S et al (2009) Combination therapy of in vitro-expanded natural killer T cells and alpha-galactosylceramide-pulsed antigen-presenting cells in patients with recurrent head and neck carcinoma. Cancer Sci 100:1092–1098

    PubMed  CAS  Google Scholar 

  • Lang GA, Maltsev SD, Besra GS et al (2004) Presentation of alpha-galactosylceramide by murine CD1d to natural killer T cells is facilitated by plasma membrane glycolipid rafts. Immunology 112:386–396

    PubMed  CAS  Google Scholar 

  • Lee WY, Moriarty TJ, Wong CH et al (2010) An intravascular immune response to Borrelia ­burgdorferi involves Kupffer cells and iNKT cells. Nat Immunol 11:295–302

    PubMed  CAS  Google Scholar 

  • Li Y, Zhou D, Xia C et al (2008) Sensitive quantitation of isoglobotriaosylceramide in the presence of isobaric components using electrospray ionization-ion trap mass spectrometry. Glycobiology 18:166–176

    PubMed  CAS  Google Scholar 

  • Long X, Deng S, Mattner J et al (2007) Synthesis and evaluation of stimulatory properties of Sphingomonadaceae glycolipids. Nat Chem Biol 3:559–564

    PubMed  CAS  Google Scholar 

  • Mallevaey T, Scott-Browne JP, Matsuda JL et al (2009) T cell receptor CDR2 beta and CDR3 beta loops collaborate functionally to shape the iNKT cell repertoire. Immunity 31:60–71

    PubMed  CAS  Google Scholar 

  • Matsuda JL, Gapin L, Baron JL et al (2003) Mouse V alpha 14i natural killer T cells are resistant to cytokine polarization in vivo. Proc Natl Acad Sci USA 100:8395–8400

    PubMed  CAS  Google Scholar 

  • Matsuda JL, Mallevaey T, Scott-Browne J et al (2008) CD1d-restricted iNKT cells, the ‘Swiss-Army knife’ of the immune system. Curr Opin Immunol 20:358–368

    PubMed  CAS  Google Scholar 

  • Mattner J, Debord KL, Ismail N et al (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434:525–529

    PubMed  CAS  Google Scholar 

  • Mattner J, Savage PB, Leung P et al (2008) Liver autoimmunity triggered by microbial activation of natural killer T cells. Cell Host Microbe 3:304–315

    PubMed  CAS  Google Scholar 

  • McCarthy C, Shepherd D, Fleire S et al (2007) The length of lipids bound to human CD1d ­molecules modulates the affinity of NKT cell TCR and the threshold of NKT cell activation. J Exp Med 204:1131–1144

    PubMed  CAS  Google Scholar 

  • Miyamoto K, Miyake S, and Yamamura T (2001) A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413:531–534

    PubMed  CAS  Google Scholar 

  • Moody DB, Zajonc DM, and Wilson IA (2005) Anatomy of CD1-lipid antigen complexes. Nat Rev Immunol 5:387–399

    PubMed  CAS  Google Scholar 

  • Morita M, Motoki K, Akimoto K et al (1995) Structure-activity relationship of alpha-galactosylceramides against B16-bearing mice. J Med Chem 38:2176–2187

    PubMed  CAS  Google Scholar 

  • Motohashi S, Nagato K, Kunii N et al (2009) A phase I-II study of alpha-galactosylceramide-pulsed IL-2/GM-CSF-cultured peripheral blood mononuclear cells in patients with advanced and recurrent non-small cell lung cancer. J Immunol 182:2492–2501

    PubMed  CAS  Google Scholar 

  • Nagarajan NA, and Kronenberg M (2007) Invariant NKT cells amplify the innate immune response to lipopolysaccharide. J Immunol 178:2706–2713

    PubMed  CAS  Google Scholar 

  • Natori T, Morita M, Akimoto K et al (1994) Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine sponge Agelas mauritianus. Tetrahedron 50:2771–2784

    CAS  Google Scholar 

  • Ndonye RM, Izmirian DP, Dunn MF et al (2005) Synthesis and evaluation of sphinganine analogues of KRN7000 and OCH. J Org Chem 70:10260–10270

    PubMed  CAS  Google Scholar 

  • O’Konek JJ, Illarionov P, Khursigara DS et al (2011) Mouse and human iNKT cell agonist beta-mannosylceramide reveals a distinct mechanism of tumor immunity. J Clin Invest 121:683–694

    PubMed  Google Scholar 

  • Oki S, Chiba A, Yamamura T et al (2004) The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells. J Clin Invest 113:1631–1640

    PubMed  CAS  Google Scholar 

  • Olson CM, Jr., Bates TC, Izadi H et al (2009) Local production of IFN-gamma by invariant NKT cells modulates acute Lyme carditis. J Immunol 182:3728–3734

    PubMed  CAS  Google Scholar 

  • Ortaldo JR, Young HA, Winkler-Pickett RT et al (2004) Dissociation of NKT stimulation, cytokine induction, and NK activation in vivo by the use of distinct TCR-binding ceramides. J Immunol 172:943–953

    PubMed  CAS  Google Scholar 

  • Paget C, Mallevaey T, Speak AO et al (2007) Activation of invariant NKT cells by toll-like receptor 9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity 27:597–609

    PubMed  CAS  Google Scholar 

  • Parekh VV, Singh AK, Wilson MT et al (2004) Quantitative and qualitative differences in the in vivo response of NKT cells to distinct alpha- and beta-anomeric glycolipids. J Immunol 173:3693–3706

    PubMed  CAS  Google Scholar 

  • Parekh VV, Wilson MT, and Van Kaer L (2005) iNKT-cell responses to glycolipids. Crit Rev Immunol 25:183–213

    PubMed  CAS  Google Scholar 

  • Park YK, Lee JW, Ko YG et al (2005) Lipid rafts are required for efficient signal transduction by CD1d. Biochem Biophys Res Commun 327:1143–1154

    PubMed  CAS  Google Scholar 

  • Pei B, Speak AO, Shepherd D et al (2011) Diverse endogenous antigens for mouse NKT cells: self-antigens that are not glycosphingolipids. J Immunol 186:1348–1360

    PubMed  CAS  Google Scholar 

  • Pellicci DG, Patel O, Kjer-Nielsen L et al (2009) Differential recognition of CD1d-alpha-galactosyl ceramide by the V beta 8.2 and V beta 7 semi-invariant NKT T cell receptors. Immunity 31:47–59

    PubMed  CAS  Google Scholar 

  • Perola O, Nousiainen T, Suomalainen S et al (2002) Recurrent Sphingomonas paucimobilis -bacteraemia associated with a multi-bacterial water-borne epidemic among neutropenic patients. J Hosp Infect 50:196–201

    PubMed  CAS  Google Scholar 

  • Porcelli S, Yockey CE, Brenner MB et al (1993) Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med 178:1–16

    PubMed  CAS  Google Scholar 

  • Porubsky S, Speak AO, Luckow B et al (2007) Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (iGb3) deficiency. Proc Natl Acad Sci USA 104:5977–5982

    PubMed  CAS  Google Scholar 

  • Prigozy TI, Naidenko O, Qasba P et al (2001) Glycolipid antigen processing for presentation by CD1d molecules. Science 291:664–667

    PubMed  CAS  Google Scholar 

  • Rudolph MG, Stanfield RL, and Wilson IA (2006) How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol 24:419–466

    PubMed  CAS  Google Scholar 

  • Sada-Ovalle I, Chiba A, Gonzales A et al (2008) Innate invariant NKT cells recognize Mycobacterium tuberculosis-infected macrophages, produce interferon-gamma, and kill intracellular bacteria. PLoS Pathog 4:e1000239

    PubMed  Google Scholar 

  • Sakai T, Naidenko OV, Iijima H et al (1999) Syntheses of biotinylated alpha-galactosylceramides and their effects on the immune system and CD1 molecules. J Med Chem 42:1836–1841

    PubMed  CAS  Google Scholar 

  • Salio M, Silk JD, and Cerundolo V (2010) Recent advances in processing and presentation of CD1 bound lipid antigens. Curr Opin Immunol 22:81–88

    PubMed  CAS  Google Scholar 

  • Salio M, Speak AO, Shepherd D et al (2007) Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc Natl Acad Sci USA 104:20490–20495

    PubMed  CAS  Google Scholar 

  • Sandberg JK, and Ljunggren HG (2005) Development and function of CD1d-restricted NKT cells: influence of sphingolipids, SAP and sex. Trends Immunol 26:347–349

    PubMed  CAS  Google Scholar 

  • Schmieg J, Yang G, Franck RW et al (2003) Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-Galactosylceramide. J Exp Med 198:1631–1641

    PubMed  CAS  Google Scholar 

  • Schumann J, Facciotti F, Panza L et al (2007) Differential alteration of lipid antigen presentation to NKT cells due to imbalances in lipid metabolism. Eur J Immunol 37:1431–1441

    PubMed  CAS  Google Scholar 

  • Scott-Browne JP, Matsuda JL, Mallevaey T et al (2007) Germline-encoded recognition of diverse glycolipids by natural killer T cells. Nat Immunol 8:1105–1113

    PubMed  CAS  Google Scholar 

  • Selmi C, Balkwill DL, Invernizzi P et al (2003) Patients with primary biliary cirrhosis react against a ubiquitous xenobiotic-metabolizing bacterium. Hepatology 38:1250–1257

    PubMed  CAS  Google Scholar 

  • Shimizu K, Goto A, Fukui M et al (2007) Tumor cells loaded with alpha-galactosylceramide induce innate NKT and NK cell-dependent resistance to tumor implantation in mice. J Immunol 178:2853–2861

    PubMed  CAS  Google Scholar 

  • Sidobre S, Hammond KJ, Benazet-Sidobre L et al (2004) The T cell antigen receptor expressed by Valpha14i NKT cells has a unique mode of glycosphingolipid antigen recognition. Proc Natl Acad Sci USA 101:12254–12259

    PubMed  CAS  Google Scholar 

  • Silk JD, Salio M, Brown J et al (2008a) Structural and functional aspects of lipid binding by CD1 molecules. Annu Rev Cell Dev Biol 24:369–395

    PubMed  CAS  Google Scholar 

  • Silk JD, Salio M, Reddy BG et al (2008b) Cutting edge: nonglycosidic CD1d lipid ligands activate human and murine invariant NKT cells. J Immunol 180:6452–6456

    PubMed  CAS  Google Scholar 

  • Speak AO, Salio M, Neville DC et al (2007) Implications for invariant natural killer T cell ligands due to the restricted presence of isoglobotrihexosylceramide in mammals. Proc Natl Acad Sci USA 104:5971–5976

    PubMed  CAS  Google Scholar 

  • Sriram V, Du W, Gervay-Hague J et al (2005) Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur J Immunol 35:1692–1701

    PubMed  CAS  Google Scholar 

  • Stanic AK, De Silva AD, Park JJ et al (2003a) Defective presentation of the CD1d1-restricted natural Va14Ja18 NKT lymphocyte antigen caused by beta-D-glucosylceramide synthase deficiency. Proc Natl Acad Sci USA 100:1849–1854

    PubMed  CAS  Google Scholar 

  • Stanic AK, Shashidharamurthy R, Bezbradica JS et al (2003b) Another view of T cell antigen recognition: cooperative engagement of glycolipid antigens by Va14Ja18 natural T(iNKT) cell receptor [corrected]. J Immunol 171:4539–4551

    PubMed  CAS  Google Scholar 

  • Sullivan BA, Nagarajan NA, Wingender G et al (2010) Mechanisms for glycolipid antigen-driven cytokine polarization by Valpha14i NKT cells. J Immunol 184:141–153

    PubMed  CAS  Google Scholar 

  • Tsuji M (2006) Glycolipids and phospholipids as natural CD1d-binding NKT cell ligands. Cell Mol Life Sci 63:1889–1898

    PubMed  CAS  Google Scholar 

  • Tupin E, Benhnia MR, Kinjo Y et al (2008) NKT cells prevent chronic joint inflammation after infection with Borrelia burgdorferi. Proc Natl Acad Sci USA 105:19863–19868

    PubMed  CAS  Google Scholar 

  • Wang J, Li Y, Kinjo Y et al (2010) Lipid binding orientation within CD1d affects recognition of Borrelia burgorferi antigens by NKT cells. Proc Natl Acad Sci USA 107:1535–1540

    PubMed  CAS  Google Scholar 

  • Wei B, Wingender G, Fujiwara D et al (2010) Commensal microbiota and CD8+ T cells shape the formation of invariant NKT cells. J Immunol 184:1218–1226

    PubMed  CAS  Google Scholar 

  • Wu D, Xing GW, Poles MA et al (2005) Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells. Proc Natl Acad Sci USA 102:1351–1356

    PubMed  CAS  Google Scholar 

  • Wu D, Zajonc DM, Fujio M et al (2006) Design of natural killer T cell activators: structure and function of a microbial glycosphingolipid bound to mouse CD1d. Proc Natl Acad Sci USA 103:3972–3977

    PubMed  CAS  Google Scholar 

  • Wu DY, Segal NH, Sidobre S et al (2003) Cross-presentation of disialoganglioside GD3 to natural killer T cells. J Exp Med 198:173–181

    PubMed  CAS  Google Scholar 

  • Xing GW, Wu D, Poles MA et al (2005) Synthesis and human NKT cell stimulating properties of 3-O-sulfo-alpha/beta-galactosylceramides. Bioorg Med Chem 13:2907–2916

    PubMed  CAS  Google Scholar 

  • Yang G, Schmieg J, Tsuji M et al (2004) The C-glycoside analogue of the immunostimulant alpha-galactosylceramide (KRN7000): synthesis and striking enhancement of activity. Angew Chem Int Ed Engl 43:3818–3822

    PubMed  CAS  Google Scholar 

  • Yang L, Weis JH, Eichwald E et al (1994) Heritable susceptibility to severe Borrelia burgdorferi-induced arthritis is dominant and is associated with persistence of large numbers of spirochetes in tissues. Infect Immun 62:492–500

    PubMed  CAS  Google Scholar 

  • Yin N, Long X, Goff RD et al (2009) Alpha anomers of iGb3 and Gb3 stimulate cytokine production by natural killer T cells. ACS Chem Biol 4:199–208

    PubMed  Google Scholar 

  • Yu KO, Im JS, Molano A et al (2005) Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of alpha-galactosylceramides. Proc Natl Acad Sci USA 102:3383–3388

    PubMed  CAS  Google Scholar 

  • Yuan W, Kang SJ, Evans JE et al (2009) Natural lipid ligands associated with human CD1d targeted to different subcellular compartments. J Immunol 182:4784–4791

    PubMed  CAS  Google Scholar 

  • Zajonc DM, Ainge GD, Painter GF et al (2006) Structural characterization of mycobacterial phosphatidylinositol mannoside binding to mouse CD1d. J Immunol 177:4577–4583

    PubMed  CAS  Google Scholar 

  • Zajonc DM, Cantu C, 3rd, Mattner J et al (2005) Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor. Nat Immunol 6:810–818

    PubMed  CAS  Google Scholar 

  • Zajonc DM, and Kronenberg M (2007) CD1 mediated T cell recognition of glycolipids. Curr Opin Struct Biol 17:521–529

    PubMed  CAS  Google Scholar 

  • Zajonc DM, and Kronenberg M (2009) Carbohydrate specificity of the recognition of diverse ­glycolipids by natural killer T cells. Immunol Rev 230:188–200

    PubMed  CAS  Google Scholar 

  • Zajonc DM, Savage PB, Bendelac A et al (2008) Crystal structures of mouse CD1d-iGb3 complex and its cognate Valpha14 T cell receptor suggest a model for dual recognition of foreign and self glycolipids. J Mol Biol 377:1104–1116

    PubMed  CAS  Google Scholar 

  • Zajonc DM, and Wilson IA (2007) Architecture of CD1 proteins. Curr Top Microbiol Immunol 314:27–50

    PubMed  CAS  Google Scholar 

  • Zhou D, Mattner J, Cantu C, 3rd et al (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306:1786–1789

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by NIH grants AI45053 and AI71922. We thank Dr. Enrico Girardi for help with producing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell Kronenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pei, B., Kronenberg, M. (2012). Structure and Recognition of Antigens for Invariant NKT Cells. In: Terabe, M., Berzofsky, J. (eds) Natural Killer T cells. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0613-6_2

Download citation

Publish with us

Policies and ethics