Advertisement

IGF-1 Cellular Action and its Relationship to Cancer: Evidence from in Vitro and in Vivo Studies

  • Rosalyn D. Ferguson
  • Nyosha Alikhani
  • Archana Vijayakumar
  • Yvonne Fierz
  • Dara Cannata
  • Shoshana YakarEmail author
Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

Insulin-like growth factors (IGFs), which include insulin-like growth factor I (IGF-I) and insulin-like growth factor II (IGF-II) are mitogenic and anti-apoptotic growth factors that regulate cellular proliferation, differentiation and cell death. The mitogenic and anti-apoptotic properties of IGF-I and IGF-II affect both normal and cancerous cells. The effects of the IGFs on cell growth and apoptosis are ­mediated through binding to a tyrosine kinase receptor, the insulin-like growth ­factor-I receptor (IGF-IR). The IGF-IIR (the cation-independent mannose-6-phosphate receptor – M6P-R) is a single transmembrane glycoprotein that mediates the uptake and processing of M6P-containing cytokines, enzymes and peptide hormones and is involved in diverse functions related to lysosome biogenesis. IGF-II also binds the insulin receptor isoform-A (IR-A), with high affinity and can trigger mitogenic activity. IR and IGF-IR form hybrid heterodimeric receptors that bind insulin and IGFs. However, the role of the hybrid receptors in physiology and ­carcinogenesis is not fully understood and remains an area of active investigation.

Keywords

Breast Cancer Risk Endoplasmic Reticulum Stress Focal Adhesion Kinase Prostate Cancer Risk European Prospective Investigation Into Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abramovitch, S., T. Glaser, et al. (2003). “BRCA1-Sp1 interactions in transcriptional regulation of the IGF-IR gene.” FEBS Lett 541(1–3): 149–54.PubMedCrossRefGoogle Scholar
  2. Allen, G.W., C. Saba et al. (2007). “Insulin-like growth factor-I receptor signaling blockade ­combined with radiation.” Cancer Res 67(3):1155–62.PubMedCrossRefGoogle Scholar
  3. Allen, N. E., T. J. Key, et al. (2007). “Serum insulin-like growth factor (IGF)-I and IGF-binding protein-3 concentrations and prostate cancer risk: results from the European Prospective Investigation into Cancer and Nutrition.” Cancer Epidemiol Biomarkers Prev 16(6): 1121–7.PubMedCrossRefGoogle Scholar
  4. Andre, F., V. Rigot, et al. (1999). “Integrins and E-cadherin cooperate with IGF-I to induce migration of epithelial colonic cells.” Int J Cancer 83(4): 497–505.PubMedCrossRefGoogle Scholar
  5. Anzo, M., L. J. Cobb, et al. (2008). “Targeted deletion of hepatic Igf1 in TRAMP mice leads to dramatic alterations in the circulating insulin-like growth factor axis but does not reduce tumor progression.” Cancer Res 68(9): 3342–9.PubMedCrossRefGoogle Scholar
  6. Baglietto, L., D. R. English, et al. (2007). “Circulating insulin-like growth factor-I and binding protein-3 and the risk of breast cancer.” Cancer Epidemiol Biomarkers Prev 16(4): 763–8.PubMedCrossRefGoogle Scholar
  7. Balaram, S. K., D. K. Agrawal, et al. (1999). “Insulin like growth factor-1 activates nuclear factor-kappaB and increases transcription of the intercellular adhesion molecule-1 gene in endothelial cells.” Cardiovasc Surg 7(1): 91–7.PubMedCrossRefGoogle Scholar
  8. Barnes, C. J., K. Ohshiro, et al. (2007). “Insulin-like growth factor receptor as a therapeutic target in head and neck cancer.” Clin Cancer Res 13(14): 4291–9.PubMedCrossRefGoogle Scholar
  9. Baserga R., F. Peruzzi et al (2003) “The IGF-1 receptor in cancer biology.” Int J Cancer 107(6):873–7.PubMedCrossRefGoogle Scholar
  10. Bauer, T. W., W. Liu, et al. (2005). “Targeting of urokinase plasminogen activator receptor in human pancreatic carcinoma cells inhibits c-Met- and insulin-like growth factor-I receptor-mediated migration and invasion and orthotopic tumor growth in mice.” Cancer Res 65(17): 7775–81.PubMedGoogle Scholar
  11. Baxter, R. C. (1988). “Characterization of the acid-labile subunit of the growth hormone-dependent insulin-like growth factor binding protein complex.” J Clin Endocrinol Metab 67(2): 265–72.PubMedCrossRefGoogle Scholar
  12. Bentov, I., D. LeRoith, et al. (2003). “The WT1 Wilms’ tumor suppressor gene: a novel target for insulin-like growth factor-I action.” Endocrinology 144(10): 4276–9.PubMedCrossRefGoogle Scholar
  13. Berfield, A. K., D. Spicer, et al. (1997). “Insulin-like growth factor I (IGF-I) induces unique effects in the cytoskeleton of cultured rat glomerular mesangial cells.” J Histochem Cytochem 45(4): 583–93.PubMedCrossRefGoogle Scholar
  14. Bergsland E.K. (2004). “Update on clinical trials targeting vascular endothelial growth factor in cancer.” Am J Health Syst Pharm 61(21 Suppl 5): S12–20.PubMedGoogle Scholar
  15. Bjorndahl, M., R. Cao, et al. (2005). “Insulin-like growth factors 1 and 2 induce lymphangiogenesis in vivo.” Proc Natl Acad Sci USA 102(43): 15593–8.PubMedCrossRefGoogle Scholar
  16. Blum G., A. Gazit et al. (2000). “Substrate competitive inhibitors of IGF-1 receptor kinase.” Biochemistry 39(51):15705–12.PubMedCrossRefGoogle Scholar
  17. Bohlke, K., D. W. Cramer, et al. (1998). “Insulin-like growth factor-I in relation to premenopausal ductal carcinoma in situ of the breast.” Epidemiology 9(5): 570–3.PubMedCrossRefGoogle Scholar
  18. Bredin, C. G., Z. Liu, et al. (2003). “Growth factor-enhanced expression and activity of matrix metalloproteases in human non-small cell lung cancer cell lines.” Anticancer Res 23(6C): 4877–84.Google Scholar
  19. Bruning, P. F., J. Van Doorn, et al. (1995). “Insulin-like growth-factor-binding protein 3 is decreased in early-stage operable pre-menopausal breast cancer.” Int J Cancer 62(3): 266–70.PubMedCrossRefGoogle Scholar
  20. Burgering, B. M. and R. H. Medema (2003). “Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty.” J Leukoc Biol 73(6): 689–701.PubMedCrossRefGoogle Scholar
  21. Call, K. M., T. Glaser, et al. (1990). “Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus.” Cell 60(3): 509–20.PubMedCrossRefGoogle Scholar
  22. Cano, A., M. A. Perez-Moreno, et al. (2000). “The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression.” Nat Cell Biol 2(2): 76–83.PubMedCrossRefGoogle Scholar
  23. Cantley, L. C. and B. G. Neel (1999). “New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway.” Proc Natl Acad Sci USA 96(8): 4240–5.PubMedCrossRefGoogle Scholar
  24. Cats, A., R. P. Dullaart, et al. (1996). “Increased epithelial cell proliferation in the colon of patients with acromegaly.” Cancer Res 56(3): 523–6.PubMedGoogle Scholar
  25. Ceacareanu, A. C., B. Ceacareanu, et al. (2006). “Nitric oxide attenuates IGF-I-induced aortic smooth muscle cell motility by decreasing Rac1 activity: essential role of PTP-PEST and p130cas.” Am J Physiol Cell Physiol 290(4): C1263–70.PubMedCrossRefGoogle Scholar
  26. Chan, J. M., M. J. Stampfer, et al. (1998). “Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study.” Science 279(5350): 563–6.PubMedCrossRefGoogle Scholar
  27. Chattopadhyay, S. and V. I. Shubayev (2009). “MMP-9 controls Schwann cell proliferation and phenotypic remodeling via IGF-1 and ErbB receptor-mediated activation of MEK/ERK pathway.” Glia 57(12): 1316–25.PubMedCrossRefGoogle Scholar
  28. Che, W., N. Lerner-Marmarosh, et al. (2002). “Insulin-like growth factor-1 enhances inflammatory responses in endothelial cells: role of Gab1 and MEKK3 in TNF-alpha-induced c-Jun and NF-kappaB activation and adhesion molecule expression.” Circ Res 90(11): 1222–30.PubMedCrossRefGoogle Scholar
  29. Chen, C., S. K. Lewis, et al. (2005). “Prostate carcinoma incidence in relation to prediagnostic circulating levels of insulin-like growth factor I, insulin-like growth factor binding protein 3, and insulin.” Cancer 103(1): 76–84.PubMedCrossRefGoogle Scholar
  30. Chen, Y. W., V. Boyartchuk, et al. (2009). “Differential roles of insulin-like growth factor receptor- and insulin receptor-mediated signaling in the phenotypes of hepatocellular carcinoma cells.” Neoplasia 11(9): 835–45.PubMedGoogle Scholar
  31. Cheng, H. L., M. L. Steinway, et al. (2000). “GTPases and phosphatidylinositol 3-kinase are critical for insulin-like growth factor-I-mediated Schwann cell motility.” J Biol Chem 275(35): 27197–204.PubMedGoogle Scholar
  32. Chernicky, C. L., H. Tan, et al. (2002). “Treatment of murine breast cancer cells with antisense RNA to the type I insulin-like growth factor receptor decreases the level of plasminogen activator transcripts, inhibits cell growth in vitro, and reduces tumorigenesis in vivo.” Mol Pathol 55(2): 102–9.PubMedCrossRefGoogle Scholar
  33. Chinnadurai, G. (2002). “CtBP, an unconventional transcriptional corepressor in development and oncogenesis.” Mol Cell 9(2): 213–24.PubMedCrossRefGoogle Scholar
  34. Christofori, G., P. Naik, et al. (1995). “Deregulation of both imprinted and expressed alleles of the insulin-like growth factor 2 gene during beta-cell tumorigenesis.” Nat Genet 10(2): 196–201.PubMedCrossRefGoogle Scholar
  35. Culig, Z., A. Hobisch, et al. (1995). “Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor and epidermal growth factor.” Eur Urol 27 Suppl 2: 45–7.PubMedGoogle Scholar
  36. D’Ambrosio C., A.A. Ferber et al. (1996). “Soluble insulin-like growth factor I receptor that induces apoptosis of tumor cells in vivo and inhibits tumorigenesis.” Cancer Res 56(17): 4013–20.PubMedGoogle Scholar
  37. Del Giudice, M. E., I. G. Fantus, et al. (1998). “Insulin and related factors in premenopausal breast cancer risk.” Breast Cancer Res Treat 47(2): 111–20.PubMedCrossRefGoogle Scholar
  38. Delling, U., J. Tureckova, et al. (2000). “A calcineurin-NFATc3-dependent pathway regulates skeletal muscle differentiation and slow myosin heavy-chain expression.” Mol Cell Biol 20(17): 6600–11.PubMedCrossRefGoogle Scholar
  39. Desbois-Mouthon C., A. Baron et al. (2009). “Insulin-like growth factor-1 receptor inhibition induces a resistance mechanism via the epidermal growth factor receptor/HER3/AKT signaling pathway: rational basis for cotargeting insulin-like growth factor-1 receptor and epidermal growth factor receptor in hepatocellular carcinoma.” Clin Cancer Res 15(17):5445–56.PubMedCrossRefGoogle Scholar
  40. Di Cristofano, A. and P. P. Pandolfi (2000). “The multiple roles of PTEN in tumor suppression.” Cell 100(4): 387–90.PubMedCrossRefGoogle Scholar
  41. DiGiovanni, J., K. Kiguchi, et al. (2000). “Deregulated expression of insulin-like growth factor 1 in prostate epithelium leads to neoplasia in transgenic mice.” Proc Natl Acad Sci USA 97(7): 3455–60.PubMedCrossRefGoogle Scholar
  42. Dirx, M.J., P.A. van den Brandt et al. (1999). Diet in adolescence and the risk of breast cancer: results of the Netherlands Cohort Study. Cancer Causes Control 10(3): 189–99.PubMedCrossRefGoogle Scholar
  43. Dirx, M.J., M.P. Zeegers et al. (2003). “Energy restriction and the risk of spontaneous mammary tumors in mice: a meta-analysis.” Int Journal of Cancer 106(5): 766–70.CrossRefGoogle Scholar
  44. Doerr, M. E. and J. I. Jones (1996). “The roles of integrins and extracellular matrix proteins in the insulin-like growth factor I-stimulated chemotaxis of human breast cancer cells.” J Biol Chem 271(5): 2443–7.PubMedCrossRefGoogle Scholar
  45. Dominici, F. P., D. P. Argentino, et al. (2005). “Influence of the crosstalk between growth hormone and insulin signalling on the modulation of insulin sensitivity.” Growth Horm IGF Res 15(5): 324–36.PubMedCrossRefGoogle Scholar
  46. Dunn, S. E., F. W. Kari, et al. (1997). “Dietary restriction reduces insulin-like growth factor I levels, which modulates apoptosis, cell proliferation, and tumor progression in p53-deficient mice.” Cancer Res 57(21): 4667–72.PubMedGoogle Scholar
  47. Dunn, S. E., J. V. Torres, et al. (2000). “The insulin-like growth factor-1 elevates urokinase-type plasminogen activator-1 in human breast cancer cells: a new avenue for breast cancer therapy.” Mol Carcinog 27(1): 10–7.PubMedCrossRefGoogle Scholar
  48. Dunn, S. E., J. V. Torres, et al. (2001). “Up-regulation of urokinase-type plasminogen activator by insulin-like growth factor-I depends upon phosphatidylinositol-3 kinase and mitogen-activated protein kinase kinase.” Cancer Res 61(4): 1367–74.PubMedGoogle Scholar
  49. Dupont, J., M. Karas, et al. (2000). “The potentiation of estrogen on insulin-like growth factor I action in MCF-7 human breast cancer cells includes cell cycle components.” J Biol Chem 275(46): 35893–901.PubMedCrossRefGoogle Scholar
  50. Dupont, J., A. Pierre, et al. (2003). “The insulin-like growth factor axis in cell cycle progression.” Horm Metab Res 35(11–12): 740–50.PubMedGoogle Scholar
  51. Earl, T.M., I.B. Nicoud et al. (2009). “Silencing of TLR4 decreases liver tumor burden in a murine model of colorectal metastasis and hepatic steatosis.” Ann Surg Oncol 4:1043–50.CrossRefGoogle Scholar
  52. Elia, L., R. Contu, et al. (2009). “Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions.” Circulation 120(23): 2377–85.PubMedCrossRefGoogle Scholar
  53. Etienne-Manneville, S. and A. Hall (2002). “Rho GTPases in cell biology.” Nature 420(6916): 629–35.PubMedCrossRefGoogle Scholar
  54. Figueroa, J. A., S. De Raad, et al. (2001). “Gene expression of insulin-like growth factors and receptors in neoplastic prostate tissues: correlation with clinico-pathological parameters.” Cancer Invest 19(1): 28–34.PubMedCrossRefGoogle Scholar
  55. Finlay, D. and D. Cantrell (2010). “Phosphoinositide 3-kinase and the mammalian target of rapamycin pathways control T cell migration.” Ann N Y Acad Sci 1183: 149–57.PubMedCrossRefGoogle Scholar
  56. Fowler, C.A., C.M. Perks et al (2000). “Insulin-like growth factor binding protein-3 (IGFBP-3) potentiates paclitaxel-induced apoptosis in human breast cancer cells.” Int J Cancer 88(3):448–53.PubMedCrossRefGoogle Scholar
  57. Friedl, P. (2004). “Prespecification and plasticity: shifting mechanisms of cell migration.” Curr Opin Cell Biol 16(1): 14–23.PubMedCrossRefGoogle Scholar
  58. Friedl, P., Y. Hegerfeldt, et al. (2004). “Collective cell migration in morphogenesis and cancer.” Int J Dev Biol 48(5–6): 441–9.PubMedCrossRefGoogle Scholar
  59. Fukuda, R., K. Hirota, et al. (2002). “Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells.” J Biol Chem 277(41): 38205–11.PubMedCrossRefGoogle Scholar
  60. Furlanetto, R. W., S. E. Harwell, et al. (1994). “Insulin-like growth factor-I induces cyclin-D1 expression in MG63 human osteosarcoma cells in vitro.” Mol Endocrinol 8(4): 510–7.PubMedCrossRefGoogle Scholar
  61. Furundzija, V., J. Fritzsche, et al. (2010). “IGF-1 increases macrophage motility via PKC/p38-dependent alphavbeta3-integrin inside-out signaling.” Biochem Biophys Res Commun 394(3): 786–91.PubMedCrossRefGoogle Scholar
  62. Gallicchio, M. A., C. Kaun, et al. (2003). “Urokinase type plasminogen activator receptor is involved in insulin-like growth factor-induced migration of rhabdomyosarcoma cells in vitro.” J Cell Physiol 197(1): 131–8.PubMedCrossRefGoogle Scholar
  63. Galvan, V., A. Logvinova, et al. (2003). “Type 1 insulin-like growth factor receptor (IGF-IR) signaling inhibits apoptosis signal-regulating kinase 1 (ASK1).” J Biol Chem 278(15): 13325–32.PubMedCrossRefGoogle Scholar
  64. Gariboldi, M.B., R. Ravizza et al. (2010). “The IGFR1 inhibitor NVP-AEW541 disrupts a pro-survival and pro-angiogenic IGF-STAT3-HIF1 pathway in human glioblastoma cells.” Biochem Pharmacol. In press.Google Scholar
  65. Gerald, W. L., J. Rosai, et al. (1995). “Characterization of the genomic breakpoint and chimeric transcripts in the EWS-WT1 gene fusion of desmoplastic small round cell tumor.” Proc Natl Acad Sci USA 92(4): 1028–32.PubMedCrossRefGoogle Scholar
  66. Gessler, M., A. Poustka, et al. (1990). “Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping.” Nature 343(6260): 774–8.PubMedCrossRefGoogle Scholar
  67. Giannelli, G., J. Falk-Marzillier, et al. (1997). “Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5.” Science 277(5323): 225–8.PubMedCrossRefGoogle Scholar
  68. Giovannucci, E., M. N. Pollak, et al. (2000). “A prospective study of plasma insulin-like growth factor-1 and binding protein-3 and risk of colorectal neoplasia in women.” Cancer Epidemiol Biomarkers Prev 9(4): 345–9.PubMedGoogle Scholar
  69. Giovannucci, E. (2001). “Insulin, insulin-like growth factors and colon cancer: a review of the evidence.” J Nutr 131(11 Suppl): 3109S-20S.PubMedGoogle Scholar
  70. Girnita, A., C. All-Ericsson, et al. (2006). “The insulin-like growth factor-I receptor inhibitor picropodophyllin causes tumor regression and attenuates mechanisms involved in invasion of uveal melanoma cells.” Clin Cancer Res 12(4): 1383–91.PubMedCrossRefGoogle Scholar
  71. Goetsch, L., A. Gonzalez et al. (2005). “A recombinant humanized anti-insulin-like growth factor receptor type I antibody (h7C10) enhances the antitumor activity of vinorelbine and anti-epidermal growth factor receptor therapy against human cancer xenografts.” Intl J Cancer 113(2):316–28.CrossRefGoogle Scholar
  72. Graham, T. R., H. E. Zhau, et al. (2008). “Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells.” Cancer Res 68(7): 2479–88.PubMedCrossRefGoogle Scholar
  73. Granata, R., L. Trovato et al. (2004). “Dual effects of IGFBP-3 on endothelial cell apoptosis and survival: involvement of the sphingolipid signaling pathways.” FASEB J 18(12):1456–8. In press.Google Scholar
  74. Grooteclaes, M. L. and S. M. Frisch (2000). “Evidence for a function of CtBP in epithelial gene regulation and anoikis.” Oncogene 19(33): 3823–8.PubMedCrossRefGoogle Scholar
  75. Gumbiner, B. M. (2000). “Regulation of cadherin adhesive activity.” J Cell Biol 148(3): 399–404.PubMedCrossRefGoogle Scholar
  76. Gunter, M. J., D. R. Hoover, et al. (2009). “Insulin, insulin-like growth factor-I, and risk of breast cancer in postmenopausal women.” J Natl Cancer Inst 101(1): 48–60.PubMedGoogle Scholar
  77. Guo, Y. S., S. Narayan, et al. (1992). “Characterization of insulinlike growth factor I receptors in human colon cancer.” Gastroenterology 102(4 Pt 1): 1101–8.PubMedGoogle Scholar
  78. Hadsell, D. L., K. L. Murphy, et al. (2000). “Cooperative interaction between mutant p53 and des(1–3)IGF-I accelerates mammary tumorigenesis.” Oncogene 19(7): 889–98.PubMedCrossRefGoogle Scholar
  79. Hägerstrand, D., M.B. Lindh et al. (2010). “PI3K/PTEN/Akt pathway status affects the sensitivity of high-grade glioma cell cultures to the insulin-like growth factor-1 receptor inhibitor NVP-AEW541.” Neuro Oncol. In press.Google Scholar
  80. Hamelers, I. H., R. F. van Schaik, et al. (2002). “Insulin-like growth factor I triggers nuclear accumulation of cyclin D1 in MCF-7S breast cancer cells.” J Biol Chem 277(49): 47645–52.PubMedCrossRefGoogle Scholar
  81. Hankinson, S. E., W. C. Willett, et al. (1998). “Circulating concentrations of insulin-like growth factor-I and risk of breast cancer.” Lancet 351(9113): 1393–6.PubMedCrossRefGoogle Scholar
  82. Harding, H. P. and D. Ron (2002). “Endoplasmic reticulum stress and the development of diabetes: a review.” Diabetes 51 Suppl 3: S455–61.PubMedCrossRefGoogle Scholar
  83. Harvey, K. F., N. L. Harvey, et al. (1998). “Caspase-mediated cleavage of the ubiquitin-protein ligase Nedd4 during apoptosis.” J Biol Chem 273(22): 13524–30.PubMedCrossRefGoogle Scholar
  84. Hayashi, M., M. Sakata, et al. (2005). “Up-regulation of c-met protooncogene product expression through hypoxia-inducible factor-1alpha is involved in trophoblast invasion under low-oxygen tension.” Endocrinology 146(11): 4682–9.PubMedCrossRefGoogle Scholar
  85. Häyry, P., M. Myllärniemi et al. (1995). “Stabile D-peptide analog of insulin-like growth factor-1 inhibits smooth muscle cell proliferation after carotid ballooning injury in the rat.” FASEB J 9(13):1336–44.PubMedGoogle Scholar
  86. Heck, S., F. Lezoualc’h, et al. (1999). “Insulin-like growth factor-1-mediated neuroprotection against oxidative stress is associated with activation of nuclear factor kappaB.” J Biol Chem 274(14): 9828–35.PubMedCrossRefGoogle Scholar
  87. Hellawell, G. O., G. D. Turner, et al. (2002). “Expression of the type 1 insulin-like growth factor receptor is up-regulated in primary prostate cancer and commonly persists in metastatic disease.” Cancer Res 62(10): 2942–50.PubMedGoogle Scholar
  88. Hemers, E., C. Duval, et al. (2005). “Insulin-like growth factor binding protein-5 is a target of matrix metalloproteinase-7: implications for epithelial-mesenchymal signaling.” Cancer Res 65(16): 7363–9.PubMedCrossRefGoogle Scholar
  89. Hong, S. H., J. Briggs, et al. (2009). “Murine osteosarcoma primary tumour growth and metastatic progression is maintained after marked suppression of serum insulin-like growth factor I.” Int J Cancer 124(9): 2042–9.PubMedCrossRefGoogle Scholar
  90. Horiuchi, A., T. Imai, et al. (2003). “Up-regulation of small GTPases, RhoA and RhoC, is associated with tumor progression in ovarian carcinoma.” Lab Invest 83(6): 861–70.PubMedGoogle Scholar
  91. Hotamisligil, G. S. (2006). “Inflammation and metabolic disorders.” Nature 444(7121): 860–7.PubMedCrossRefGoogle Scholar
  92. Humphries, M. J. (2000). “Integrin structure.” Biochem Soc Trans 28(4): 311–39.PubMedCrossRefGoogle Scholar
  93. Hursting, S. D., B. R. Switzer, et al. (1993). “The growth hormone: insulin-like growth factor 1 axis is a mediator of diet restriction-induced inhibition of mononuclear cell leukemia in Fischer rats.” Cancer Res 53(12): 2750–7.PubMedGoogle Scholar
  94. Iwamura, M., P. M. Sluss, et al. (1993). “Insulin-like growth factor I: action and receptor characterization in human prostate cancer cell lines.” Prostate 22(3): 243–52.PubMedCrossRefGoogle Scholar
  95. Janssen, J. A., M. F. Wildhagen, et al. (2004). “Circulating free insulin-like growth factor (IGF)-I, total IGF-I, and IGF binding protein-3 levels do not predict the future risk to develop prostate cancer: results of a case-control study involving 201 patients within a population-based screening with a 4-year interval.” J Clin Endocrinol Metab 89(9): 4391–6.PubMedCrossRefGoogle Scholar
  96. Jenkins, P. J., P. D. Fairclough, et al. (1997). “Acromegaly, colonic polyps and carcinoma.” Clin Endocrinol (Oxf) 47(1): 17–22.CrossRefGoogle Scholar
  97. Kaaks, R., P. Toniolo, et al. (2000). “Serum C-peptide, insulin-like growth factor (IGF)-I, IGF-binding proteins, and colorectal cancer risk in women.” J Natl Cancer Inst 92(19): 1592–600.PubMedCrossRefGoogle Scholar
  98. Karnieli, E., H. Werner, et al. (1996). “The IGF-I receptor gene promoter is a molecular target for the Ewing’s sarcoma-Wilms’ tumor 1 fusion protein.” J Biol Chem 271(32): 19304–9.PubMedCrossRefGoogle Scholar
  99. Key, T. J., P. N. Appleby, A. W. Roddam, (2010). Endogenous Hormones and Breast Cancer Collaborative Group. “Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast ­cancer risk: pooled individual data analysis of 17 prospective studies.” Lancet Oncol 11(6): 530–42.PubMedCrossRefGoogle Scholar
  100. Kiaris, H., M. Koutsilieris et al. (2003). “Growth hormone-releasing hormone and extra- pituitary tumorigenesis: therapeutic and diagnostic applications of growth hormone-releasing hormone antagonists.” Expert Opin Investig Drugs 12(8):1385–94.PubMedCrossRefGoogle Scholar
  101. Kiely, P. A., D. O’Gorman, et al. (2006). “Insulin-like growth factor I controls a mutually exclusive association of RACK1 with protein phosphatase 2A and beta1 integrin to promote cell migration.” Mol Cell Biol 26(11): 4041–51.PubMedCrossRefGoogle Scholar
  102. Kim, H. J., B. C. Litzenburger, et al. (2007). “Constitutively active type I insulin-like growth factor receptor causes transformation and xenograft growth of immortalized mammary epithelial cells and is accompanied by an epithelial-to-mesenchymal transition mediated by NF-kappaB and snail.” Mol Cell Biol 27(8): 3165–75.PubMedCrossRefGoogle Scholar
  103. Kjoller, L. and A. Hall (1999). “Signaling to Rho GTPases.” Exp Cell Res 253(1): 166–79.PubMedCrossRefGoogle Scholar
  104. Kleer, C. G., K. L. van Golen, et al. (2002). “Characterization of RhoC expression in benign and malignant breast disease: a potential new marker for small breast carcinomas with metastatic ability.” Am J Pathol 160(2): 579–84.PubMedCrossRefGoogle Scholar
  105. Kleinberg, D. L., M. Feldman, et al. (2000). “IGF-I: an essential factor in terminal end bud formation and ductal morphogenesis.” J Mammary Gland Biol Neoplasia 5(1): 7–17.PubMedCrossRefGoogle Scholar
  106. Klemke, R. L., M. Yebra, et al. (1994). “Receptor tyrosine kinase signaling required for integrin alpha v beta 5-directed cell motility but not adhesion on vitronectin.” J Cell Biol 127(3): 859–66.PubMedCrossRefGoogle Scholar
  107. Knudsen, K. A., A. P. Soler, et al. (1995). “Interaction of alpha-actinin with the cadherin/catenin cell-cell adhesion complex via alpha-catenin.” J Cell Biol 130(1): 67–77.PubMedCrossRefGoogle Scholar
  108. Lacey, J. V., Jr., A. W. Hsing, et al. (2001). “Null association between insulin-like growth factors, insulin-like growth factor-binding proteins, and prostate cancer in a prospective study.” Cancer Epidemiol Biomarkers Prev 10(10): 1101–2.PubMedGoogle Scholar
  109. Lang, S. A., C. Moser, et al. (2007). “Targeting heat shock protein 90 in pancreatic cancer impairs insulin-like growth factor-I receptor signaling, disrupts an interleukin-6/signal-transducer and activator of transcription 3/hypoxia-inducible factor-1alpha autocrine loop, and reduces orthotopic tumor growth.” Clin Cancer Res 13(21): 6459–68.PubMedCrossRefGoogle Scholar
  110. Laughner, E., P. Taghavi, et al. (2001). “HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression.” Mol Cell Biol 21(12): 3995–4004.PubMedCrossRefGoogle Scholar
  111. Lavoie, J. N., G. L’Allemain, et al. (1996). “Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway.” J Biol Chem 271(34): 20608–16.PubMedCrossRefGoogle Scholar
  112. LeRoith, D. (2007). “Insulin glargine and receptor-mediated signalling: clinical implications in treating type 2 diabetes.” Diabetes Metab Res Rev 23(8): 593–9.PubMedCrossRefGoogle Scholar
  113. Lee, A. V., J. G. Jackson, et al. (1999). “Enhancement of insulin-like growth factor signaling in human breast cancer: estrogen regulation of insulin receptor substrate-1 expression in vitro and in vivo.” Mol Endocrinol 13(5): 787–96.PubMedCrossRefGoogle Scholar
  114. Lee, D.Y., H.K. Yee et al. (2002). “Enhanced expression of insulin-like growth factor binding protein-3 sensitizes the growth inhibitory effect of anticancer drugs in gastric cancer cells.” Biochem Biophys Res Commun 294(2): 480–6.PubMedCrossRefGoogle Scholar
  115. Leger, B., R. Cartoni, et al. (2006). “Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy.” J Physiol 576(Pt 3): 923–33.PubMedCrossRefGoogle Scholar
  116. Li, S., D. Zhang, et al. (2009). “The IGF-I receptor can alter the matrix metalloproteinase repertoire of tumor cells through transcriptional regulation of PKC-{alpha}.” Mol Endocrinol 23(12): 2013–25.PubMedCrossRefGoogle Scholar
  117. Lip P.L., S. Chatterjee et al. (2004). “Plasma vascular endothelial growth factor, angiopoietin-2, and soluble angiopoietin receptor tie-2 in diabetic retinopathy: effects of laser photocoagulation and angiotensin receptor blockade.” Br J Opthamol 88(12):1543–6.CrossRefGoogle Scholar
  118. Litzenburger, B.C., H.J. Kim et al. (2009). “BMS-536924 reverses IGF-IR-induced transformation of mammary epithelial cells and causes growth inhibition and polarization of MCF7 cells.” Clin Cancer Res 15(1):226–37.PubMedCrossRefGoogle Scholar
  119. Lopez, T. and D. Hanahan (2002). “Elevated levels of IGF-1 receptor convey invasive and metastatic capability in a mouse model of pancreatic islet tumorigenesis.” Cancer Cell 1(4): 339–53.PubMedCrossRefGoogle Scholar
  120. Lynch, L., P. I. Vodyanik, et al. (2005). “Insulin-like growth factor I controls adhesion strength mediated by alpha5beta1 integrins in motile carcinoma cells.” Mol Biol Cell 16(1): 51–63.PubMedCrossRefGoogle Scholar
  121. Ma, J., M. N. Pollak, et al. (1999). “Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3.” J Natl Cancer Inst 91(7): 620–5.PubMedCrossRefGoogle Scholar
  122. Ma, Y. and L. M. Hendershot (2004). “The role of the unfolded protein response in tumour development: friend or foe?” Nat Rev Cancer 4(12): 966–77.PubMedCrossRefGoogle Scholar
  123. Manes, S., M. Llorente, et al. (1999). “The matrix metalloproteinase-9 regulates the insulin-like growth factor-triggered autocrine response in DU-145 carcinoma cells.” J Biol Chem 274(11): 6935–45.PubMedCrossRefGoogle Scholar
  124. Manes, S., E. Mira, et al. (1997). “Identification of insulin-like growth factor-binding protein-1 as a potential physiological substrate for human stromelysin-3.” J Biol Chem 272(41): 25706–12.PubMedCrossRefGoogle Scholar
  125. Manousos, O., J. Souglakos, et al. (1999). “IGF-I and IGF-II in relation to colorectal cancer.” Int J Cancer 83(1): 15–7.PubMedCrossRefGoogle Scholar
  126. Mantzoros, C. S., A. Tzonou, et al. (1997). “Insulin-like growth factor 1 in relation to prostate cancer and benign prostatic hyperplasia.” Br J Cancer 76(9): 1115–8.PubMedCrossRefGoogle Scholar
  127. Maor, S. B., S. Abramovitch, et al. (2000). “BRCA1 suppresses insulin-like growth factor-I receptor promoter activity: potential interaction between BRCA1 and Sp1.” Mol Genet Metab 69(2): 130–6.PubMedCrossRefGoogle Scholar
  128. Maor, S., A. Yosepovich et al. (2007). “Elevated insulin-like growth factor −1 receptor (IGF-1R) levels in primary breast tumors associated with BRCA1 mutations”. Cancer Lett 257(2):236–43.PubMedCrossRefGoogle Scholar
  129. Marelli, M. M., R. M. Moretti, et al. (2006). “Insulin-like growth factor-I promotes migration in human androgen-independent prostate cancer cells via the alphavbeta3 integrin and PI3-K/Akt signaling.” Int J Oncol 28(3): 723–30.PubMedGoogle Scholar
  130. Metalli, D., F. Lovat, et al. (2010). “The Insulin-Like Growth Factor Receptor I Promotes Motility and Invasion of Bladder Cancer Cells through Akt- and Mitogen-Activated Protein Kinase-Dependent Activation of Paxillin.” Am J Pathol.Google Scholar
  131. Meyer, G. E., E. Shelden, et al. (2001). “Insulin-like growth factor I stimulates motility in human neuroblastoma cells.” Oncogene 20(51): 7542–50.PubMedCrossRefGoogle Scholar
  132. Miki, H. and T. Takenawa (2003). “Regulation of actin dynamics by WASP family proteins.” J Biochem 134(3): 309–13.PubMedCrossRefGoogle Scholar
  133. Miller, T. W., M. Perez-Torres, et al. (2009). “Loss of Phosphatase and Tensin homologue deleted on chromosome 10 engages ErbB3 and insulin-like growth factor-I receptor signaling to ­promote antiestrogen resistance in breast cancer.” Cancer Res 69(10): 4192–201.PubMedCrossRefGoogle Scholar
  134. Mira, E., S. Manes, et al. (1999). “Insulin-like growth factor I-triggered cell migration and invasion are mediated by matrix metalloproteinase-9.” Endocrinology 140(4): 1657–64.PubMedCrossRefGoogle Scholar
  135. Mitchison, T. J. and L. P. Cramer (1996). “Actin-based cell motility and cell locomotion.” Cell 84(3): 371–9.PubMedCrossRefGoogle Scholar
  136. Mitsiades, C.S, N.S. Mitsiades et al. (2004). “Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors.” Cancer Cell 5(3):221–30.PubMedCrossRefGoogle Scholar
  137. Mitsiades, N., W. H. Yu, et al. (2001). “Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity.” Cancer Res 61(2): 577–81.PubMedGoogle Scholar
  138. Miyashita, T., Y. Takeishi, et al. (2001). “Role of calcineurin in insulin-like growth factor-1-induced hypertrophy of cultured adult rat ventricular myocytes.” Jpn Circ J 65(9): 815–9.PubMedCrossRefGoogle Scholar
  139. Moore, T., S. Carbajal, et al. (2008). “Reduced susceptibility to two-stage skin carcinogenesis in mice with low circulating insulin-like growth factor I levels.” Cancer Res 68(10): 3680–8.PubMedCrossRefGoogle Scholar
  140. Moorehead, R. A., O. H. Sanchez, et al. (2003). “Transgenic overexpression of IGF-II induces spontaneous lung tumors: a model for human lung adenocarcinoma.” Oncogene 22(6): 853–7.PubMedCrossRefGoogle Scholar
  141. Morali, O. G., V. Delmas, et al. (2001). “IGF-II induces rapid beta-catenin relocation to the nucleus during epithelium to mesenchyme transition.” Oncogene 20(36): 4942–50.PubMedCrossRefGoogle Scholar
  142. Morris, J. K., L. M. George, et al. (2006). “Insulin-like growth factors and cancer: no role in screening. Evidence from the BUPA study and meta-analysis of prospective epidemiological studies.” Br J Cancer 95(1): 112–7.PubMedCrossRefGoogle Scholar
  143. Mukohara, T., H. Shimada et al. (2009). “Sensitivity of breast cancer cell lines to the novel insulin-like growth factor-1 receptor (IGF-1R) inhibitor NVP-AEW541 is dependent on the level of IRS-1 expression Cancer Lett 282(1):14–24.PubMedCrossRefGoogle Scholar
  144. Musaro, A., K. J. McCullagh, et al. (1999). “IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1.” Nature 400(6744): 581–5.PubMedCrossRefGoogle Scholar
  145. Nakamura, M., S. Miyamoto, et al. (2005). “Matrix metalloproteinase-7 degrades all insulin-like growth factor binding proteins and facilitates insulin-like growth factor bioavailability.” Biochem Biophys Res Commun 333(3): 1011–6.PubMedCrossRefGoogle Scholar
  146. Nanni, P., Nicoletti, G. et al (2010). High metastatic efficiency of human sarcoma cells in Rag2/γc double knockout mice provides a powerful test system for antimetastatic targeted therapy. European Journal of Cardiovascular prevention and rehabilitation 46 (3):659–68.Google Scholar
  147. Navab, R., C. Pedraza, et al. (2008). “Loss of responsiveness to IGF-I in cells with reduced cathepsin L expression levels.” Oncogene 27(37): 4973–85.PubMedCrossRefGoogle Scholar
  148. Ng, E. H., C. Y. Ji, et al. (1998). “Altered serum levels of insulin-like growth-factor binding proteins in breast cancer patients.” Ann Surg Oncol 5(2): 194–201.PubMedCrossRefGoogle Scholar
  149. Nishiya, N., W. B. Kiosses, et al. (2005). “An alpha4 integrin-paxillin-Arf-GAP complex restricts Rac activation to the leading edge of migrating cells.” Nat Cell Biol 7(4): 343–52.PubMedCrossRefGoogle Scholar
  150. Nobes, C. and A. Hall (1994). “Regulation and function of the Rho subfamily of small GTPases.” Curr Opin Genet Dev 4(1): 77–81.PubMedCrossRefGoogle Scholar
  151. Novosyadlyy, R., N. Kurshan, et al. (2008). “Insulin-like growth factor-I protects cells from ER stress-induced apoptosis via enhancement of the adaptive capacity of endoplasmic reticulum.” Cell Death Differ 15(8): 1304–17.PubMedCrossRefGoogle Scholar
  152. Nussbaum, T., J. Samarin, et al. (2008). “Autocrine insulin-like growth factor-II stimulation of tumor cell migration is a progression step in human hepatocarcinogenesis.” Hepatology 48(1): 146–56.PubMedCrossRefGoogle Scholar
  153. Ohira, T., R. M. Gemmill, et al. (2003). “WNT7a induces E-cadherin in lung cancer cells.” Proc Natl Acad Sci USA 100(18): 10429–34.PubMedCrossRefGoogle Scholar
  154. Ohlsson, C., N. Kley, et al. (1998). “p53 regulates insulin-like growth factor-I (IGF-I) receptor expression and IGF-I-induced tyrosine phosphorylation in an osteosarcoma cell line: interaction between p53 and Sp1.” Endocrinology 139(3): 1101–7.PubMedCrossRefGoogle Scholar
  155. Okawa, Y., T. Hideshima, et al. (2009). “SNX-2112, a selective Hsp90 inhibitor, potently inhibits tumor cell growth, angiogenesis, and osteoclastogenesis in multiple myeloma and other hematologic tumors by abrogating signaling via Akt and ERK.” Blood 113(4): 846–55.PubMedCrossRefGoogle Scholar
  156. Olivo-Marston, S. E., S. D. Hursting, et al. (2009). “Genetic reduction of circulating insulin-like growth factor-1 inhibits azoxymethane-induced colon tumorigenesis in mice.” Mol Carcinog 48(12): 1071–6.PubMedCrossRefGoogle Scholar
  157. Oshima, T., M. Akaike, et al. (2008). “Clinicopathological significance of the gene expression of matrix metalloproteinase-7, insulin-like growth factor-1, insulin-like growth factor-2 and insulin-like growth factor-1 receptor in patients with colorectal cancer: insulin-like growth factor-1 receptor gene expression is a useful predictor of liver metastasis from colorectal cancer.” Oncol Rep 20(2): 359–64.PubMedGoogle Scholar
  158. Oyadomari, S. and M. Mori (2004). “Roles of CHOP/GADD153 in endoplasmic reticulum stress.” Cell Death Differ 11(4): 381–9.PubMedCrossRefGoogle Scholar
  159. Palmqvist, R., G. Hallmans, et al. (2002). “Plasma insulin-like growth factor 1, insulin-like growth factor binding protein 3, and risk of colorectal cancer: a prospective study in northern Sweden.” Gut 50(5): 642–6.PubMedCrossRefGoogle Scholar
  160. Pang, Y., B. Zheng, et al. (2007). “IGF-1 protects oligodendrocyte progenitors against TNFalpha-induced damage by activation of PI3K/Akt and interruption of the mitochondrial apoptotic pathway.” Glia 55(11): 1099–107.PubMedCrossRefGoogle Scholar
  161. Papa, V., B. Gliozzo, et al. (1993). “Insulin-like growth factor-I receptors are overexpressed and predict a low risk in human breast cancer.” Cancer Res 53(16): 3736–40.PubMedGoogle Scholar
  162. Párrizas, M., A Gazit et al. (1997). “Specific inhibition of insulin-like growth factor-1 and insulin receptor tyrosine kinase activity and biological function by tyrphostins.” Endocrinology 138(4):1427–33.PubMedCrossRefGoogle Scholar
  163. Park, E.J., J.H. Lee et al. (2010). “Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression.” Cell 140(2):197–208.PubMedCrossRefGoogle Scholar
  164. Park, I. H., E. Erbay, et al. (2005). “Skeletal myocyte hypertrophy requires mTOR kinase activity and S6K1.” Exp Cell Res 309(1): 211–9.PubMedCrossRefGoogle Scholar
  165. Parsons, S. A., D. P. Millay, et al. (2004). “Genetic loss of calcineurin blocks mechanical overload-induced skeletal muscle fiber type switching but not hypertrophy.” J Biol Chem 279(25): 26192–200.PubMedCrossRefGoogle Scholar
  166. Peinado, H., D. Olmeda, et al. (2007). “Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?” Nat Rev Cancer 7(6): 415–28.PubMedCrossRefGoogle Scholar
  167. Pennacchietti, S., P. Michieli, et al. (2003). “Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene.” Cancer Cell 3(4): 347–61.PubMedCrossRefGoogle Scholar
  168. Perks,C.M, C. McCaig et al. (2000). “Differential insulin-like growth factor (IGF)- independent interactions of IGF binding protein-3 and IGF binding protein-5 on apoptosis in human breast cancer cells. Involvement of the mitochondria.” J Cell Biochem 80(2):248–58.PubMedCrossRefGoogle Scholar
  169. Peruzzi, F., M. Prisco, et al. (1999). “Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection from apoptosis.” Mol Cell Biol 19(10): 7203–15.PubMedGoogle Scholar
  170. Peruzzi, F., M. Prisco, et al. (2001). “Anti-apoptotic signaling of the insulin-like growth factor-I receptor through mitochondrial translocation of c-Raf and Nedd4.” J Biol Chem 276(28): 25990–6.PubMedCrossRefGoogle Scholar
  171. Petridou, E., P. Koukoulomatis, et al. (2003). “Endometrial cancer and the IGF system: a case-control study in Greece.” Oncology 64(4): 341–5.PubMedCrossRefGoogle Scholar
  172. Petridou, E., Y. Papadiamantis, et al. (2000). “Leptin and insulin growth factor I in relation to breast cancer (Greece).” Cancer Causes Control 11(5): 383–8.PubMedCrossRefGoogle Scholar
  173. Peyrat, J. P., J. Bonneterre, et al. (1988). “Presence and characterization of insulin-like growth factor 1 receptors in human benign breast disease.” Eur J Cancer Clin Oncol 24(9): 1425–31.PubMedCrossRefGoogle Scholar
  174. Pietrzkowski Z., G. Mulholland et al. (1993). “Inhibition of growth of prostatic cancer cell lines by peptide analogues of insulin-like growth factor 1.” Cancer Res 53(5):1102–6.PubMedGoogle Scholar
  175. Pollak, M., M. J. Blouin, et al. (2001). “Reduced mammary gland carcinogenesis in transgenic mice expressing a growth hormone antagonist.” Br J Cancer 85(3): 428–30.PubMedCrossRefGoogle Scholar
  176. Pollak, M. N., J. F. Perdue, et al. (1987). “Presence of somatomedin receptors on primary human breast and colon carcinomas.” Cancer Lett 38(1–2): 223–30.PubMedCrossRefGoogle Scholar
  177. Pollak, M. N., C. Polychronakos, et al. (1988). “Characterization of insulin-like growth factor I (IGF-I) receptors of human breast cancer cells.” Biochem Biophys Res Commun 154(1): 326–31.PubMedCrossRefGoogle Scholar
  178. Pollak, M.N. and A.V. Schally (1998). “Mechanisms of antineoplastic action of somatostatin analogs.” Proc Soc Exp Biol Med 217(2):143–52.PubMedGoogle Scholar
  179. Poulaki, V., C. S. Mitsiades, et al. (2003). “Regulation of vascular endothelial growth factor expression by insulin-like growth factor I in thyroid carcinomas.” J Clin Endocrinol Metab 88(11): 5392–8.PubMedCrossRefGoogle Scholar
  180. Powell, W. C., B. Fingleton, et al. (1999). “The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis.” Curr Biol 9(24): 1441–7.PubMedCrossRefGoogle Scholar
  181. Qiang, Y. W., L. Yao, et al. (2004). “Insulin-like growth factor I induces migration and invasion of human multiple myeloma cells.” Blood 103(1): 301–8.PubMedCrossRefGoogle Scholar
  182. Quinn, L. S., B. G. Anderson, et al. (2007). “Muscle-specific overexpression of the type 1 IGF receptor results in myoblast-independent muscle hypertrophy via PI3K, and not calcineurin, signaling.” Am J Physiol Endocrinol Metab 293(6): E1538-51.PubMedCrossRefGoogle Scholar
  183. Raftopoulou, M. and A. Hall (2004). “Cell migration: Rho GTPases lead the way.” Dev Biol 265(1): 23–32.PubMedCrossRefGoogle Scholar
  184. Railo, M. J., K. von Smitten, et al. (1994). “The prognostic value of insulin-like growth factor-I in breast cancer patients. Results of a follow-up study on 126 patients.” Eur J Cancer 30A(3): 307–11.PubMedCrossRefGoogle Scholar
  185. Ramsey, M. M., R. L. Ingram, et al. (2002). “Growth hormone-deficient dwarf animals are resistant to dimethylbenzanthracine (DMBA)-induced mammary carcinogenesis.” Endocrinology 143(10): 4139–42.PubMedCrossRefGoogle Scholar
  186. Remacle-Bonnet, M., F. Garrouste, et al. (2005). “Membrane rafts segregate pro- from anti-apoptotic insulin-like growth factor-I receptor signaling in colon carcinoma cells stimulated by members of the tumor necrosis factor superfamily.” Am J Pathol 167(3): 761–73.PubMedCrossRefGoogle Scholar
  187. Renehan, A. G., M. Zwahlen, et al. (2004). “Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis.” Lancet 363(9418): 1346–53.PubMedCrossRefGoogle Scholar
  188. Rinaldi, S., P. H. Peeters, et al. (2006). “IGF-I, IGFBP-3 and breast cancer risk in women: The European Prospective Investigation into Cancer and Nutrition (EPIC).” Endocr Relat Cancer 13(2): 593–605.PubMedCrossRefGoogle Scholar
  189. Rosenthal, S. M. and Z. Q. Cheng (1995). “Opposing early and late effects of insulin-like growth factor I on differentiation and the cell cycle regulatory retinoblastoma protein in skeletal myoblasts.” Proc Natl Acad Sci USA 92(22): 10307–11.PubMedCrossRefGoogle Scholar
  190. Ross, M.H. and G. Bras (1971). “Lasting influence of early caloric restriction on prevalence of neoplasms in the rat.” J Natl Cancer Inst 47(5):1095–113.PubMedGoogle Scholar
  191. Ruan, W. and D. L. Kleinberg (1999). “Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development.” Endocrinology 140(11): 5075–81.PubMedCrossRefGoogle Scholar
  192. Sachdev, D., J. S. Hartell, et al. (2004). “A dominant negative type I insulin-like growth factor receptor inhibits metastasis of human cancer cells.” J Biol Chem 279(6): 5017–24.PubMedCrossRefGoogle Scholar
  193. Sachdev, P., Y. X. Jiang, et al. (2001). “Differential requirement for Rho family GTPases in an oncogenic insulin-like growth factor-I receptor-induced cell transformation.” J Biol Chem 276(28): 26461–71.PubMedCrossRefGoogle Scholar
  194. Sah, V. P., T. M. Seasholtz, et al. (2000). “The role of Rho in G protein-coupled receptor signal transduction.” Annu Rev Pharmacol Toxicol 40: 459–89.PubMedCrossRefGoogle Scholar
  195. Sakatani, T., A. Kaneda, et al. (2005). “Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice.” Science 307(5717): 1976–8.PubMedCrossRefGoogle Scholar
  196. Salani, B., L. Briatore, et al. (2008). “Caveolin-1 down-regulation inhibits insulin-like growth factor-I receptor signal transduction in H9C2 rat cardiomyoblasts.” Endocrinology 149(2): 461–5.PubMedCrossRefGoogle Scholar
  197. Schakman, O., S. Kalista, et al. (2008). “Role of Akt/GSK-3beta/beta-catenin transduction pathway in the muscle anti-atrophy action of insulin-like growth factor-I in glucocorticoid-treated rats.” Endocrinology 149(8): 3900–8.PubMedCrossRefGoogle Scholar
  198. Schernhammer, E. S., J. M. Holly, et al. (2006). “Insulin-like growth factor-I, its binding proteins (IGFBP-1 and IGFBP-3), and growth hormone and breast cancer risk in The Nurses Health Study II.” Endocr Relat Cancer 13(2): 583–92.PubMedCrossRefGoogle Scholar
  199. Schroder, M. and R. J. Kaufman (2005). “ER stress and the unfolded protein response.” Mutat Res 569(1–2): 29–63.PubMedGoogle Scholar
  200. Semenza, G. L. (2003). “Targeting HIF-1 for cancer therapy.” Nat Rev Cancer 3(10): 721–32.PubMedCrossRefGoogle Scholar
  201. Semsarian, C., M. J. Wu, et al. (1999). “Skeletal muscle hypertrophy is mediated by a Ca2+−dependent calcineurin signalling pathway.” Nature 400(6744): 576–81.PubMedCrossRefGoogle Scholar
  202. Severi, G., H. A. Morris, et al. (2006). “Circulating insulin-like growth factor-I and binding protein-3 and risk of prostate cancer.” Cancer Epidemiol Biomarkers Prev 15(6): 1137–41.PubMedCrossRefGoogle Scholar
  203. Shi, R., H. Yu, et al. (2004). “IGF-I and breast cancer: a meta-analysis.” Int J Cancer 111(3): 418–23.PubMedCrossRefGoogle Scholar
  204. Shields, S. K., C. Nicola, et al. (2007). “Rho guanosine 5’-triphosphatases differentially regulate insulin-like growth factor I (IGF-I) receptor-dependent and -independent actions of IGF-II on human trophoblast migration.” Endocrinology 148(10): 4906–17.PubMedCrossRefGoogle Scholar
  205. Shimizu, C., T. Hasegawa, et al. (2004). “Expression of insulin-like growth factor 1 receptor in primary breast cancer: immunohistochemical analysis.” Hum Pathol 35(12): 1537–42.PubMedCrossRefGoogle Scholar
  206. Skobe, M., T. Hawighorst, et al. (2001). “Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis.” Nat Med 7(2): 192–8.PubMedCrossRefGoogle Scholar
  207. Srinivasan, S., M. Ohsugi, et al. (2005). “Endoplasmic reticulum stress-induced apoptosis is partly mediated by reduced insulin signaling through phosphatidylinositol 3-kinase/Akt and increased glycogen synthase kinase-3beta in mouse insulinoma cells.” Diabetes 54(4): 968–75.PubMedCrossRefGoogle Scholar
  208. Stacker, S. A., C. Caesar, et al. (2001). “VEGF-D promotes the metastatic spread of tumor cells via the lymphatics.” Nat Med 7(2): 186–91.PubMedCrossRefGoogle Scholar
  209. Stattin, P., A. Bylund, et al. (2000). “Plasma insulin-like growth factor-I, insulin-like growth factor-binding proteins, and prostate cancer risk: a prospective study.” J Natl Cancer Inst 92(23): 1910–7.PubMedCrossRefGoogle Scholar
  210. Stitt, T. N., D. Drujan, et al. (2004). “The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors.” Mol Cell 14(3): 395–403.PubMedCrossRefGoogle Scholar
  211. Stoeltzing, O., W. Liu, et al. (2007). “Regulation of cyclooxygenase-2 (COX-2) expression in human pancreatic carcinoma cells by the insulin-like growth factor-I receptor (IGF-IR) system.” Cancer Lett 258(2): 291–300.PubMedCrossRefGoogle Scholar
  212. Stracke, M. L., J. D. Engel, et al. (1989). “The type I insulin-like growth factor receptor is a motility receptor in human melanoma cells.” J Biol Chem 264(36): 21544–9.PubMedGoogle Scholar
  213. Sugumar, A., Y. C. Liu, et al. (2004). “Insulin-like growth factor (IGF)-I and IGF-binding protein 3 and the risk of premenopausal breast cancer: a meta-analysis of literature.” Int J Cancer 111(2): 293–7.PubMedCrossRefGoogle Scholar
  214. Surmacz, E. (2003) “Growth factor receptors as therapeutic targets: strategies to inhibit the insulin-like growth factor I receptor.” Oncogene 22(42): 6589–97.PubMedCrossRefGoogle Scholar
  215. Suwa, H., G. Ohshio, et al. (1998). “Overexpression of the rhoC gene correlates with progression of ductal adenocarcinoma of the pancreas.” Br J Cancer 77(1): 147–52.PubMedCrossRefGoogle Scholar
  216. Szereday Z., A.V. Schally et al. (2003). “Effective treatment of H838 human non-small cell lung carcinoma with a targeted cytotoxic somatostatin analog, AN-238.” Int J Oncol 22(5): 1141–6.PubMedGoogle Scholar
  217. Takeichi, M. (1991). “Cadherin cell adhesion receptors as a morphogenetic regulator.” Science 251(5000): 1451–5.PubMedCrossRefGoogle Scholar
  218. Takenawa, T. and H. Miki (2001). “WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement.” J Cell Sci 114(Pt 10): 1801–9.PubMedGoogle Scholar
  219. Tanaka, H., M. Yamamoto, et al. (2006). “Hypoxia-independent overexpression of hypoxia-inducible factor 1alpha as an early change in mouse hepatocarcinogenesis.” Cancer Res 66(23): 11263–70.PubMedCrossRefGoogle Scholar
  220. Tanno, S., S. Tanno, et al. (2001). “AKT activation up-regulates insulin-like growth factor I receptor expression and promotes invasiveness of human pancreatic cancer cells.” Cancer Res 61(2): 589–93.PubMedGoogle Scholar
  221. Taya, S., N. Inagaki, et al. (2001). “Direct interaction of insulin-like growth factor-1 receptor with leukemia-associated RhoGEF.” J Cell Biol 155(5): 809–20.PubMedCrossRefGoogle Scholar
  222. Tennant, M. K., J. B. Thrasher, et al. (1996). “Protein and messenger ribonucleic acid (mRNA) for the type 1 insulin-like growth factor (IGF) receptor is decreased and IGF-II mRNA is increased in human prostate carcinoma compared to benign prostate epithelium.” J Clin Endocrinol Metab 81(10): 3774–82.PubMedCrossRefGoogle Scholar
  223. Thimmaiah, K. N., J. B. Easton, et al. (2010). “Protection from rapamycin-induced apoptosis by insulin-like growth factor-I is partially dependent on protein kinase C signaling.” Cancer Res 70(5): 2000–9.PubMedCrossRefGoogle Scholar
  224. Tomizawa, M., F. Shinozaki, et al.(2010). “Insulin-like growth factor-I receptor in proliferation and motility of pancreatic cancer.” World J Gastroenterol 16(15): 1854–8.PubMedCrossRefGoogle Scholar
  225. Toniolo, P., P. F. Bruning, et al. (2000). “Serum insulin-like growth factor-I and breast cancer.” Int J Cancer 88(5): 828–32.PubMedCrossRefGoogle Scholar
  226. Toyoshima, K., N. Ito, et al. (1971). “Tissue culture of urinary bladder tumor induced in a rat by N-butyl-N-(−4-hydroxybutyl)nitrosamine: establishment of cell line, Nara Bladder Tumor II.” J Natl Cancer Inst 47(5): 979–85.PubMedGoogle Scholar
  227. Tsai, W. C., Y. C. Chao, et al. (2006). “Increasing EMMPRIN and matriptase expression in hepatocellular carcinoma: tissue microarray analysis of immunohistochemical scores with clinicopathological parameters.” Histopathology 49(4): 388–95.PubMedCrossRefGoogle Scholar
  228. Tseng, Y. H., K. Ueki, et al. (2002). “Differential roles of insulin receptor substrates in the anti-apoptotic function of insulin-like growth factor-1 and insulin.” J Biol Chem 277(35): 31601–11.PubMedCrossRefGoogle Scholar
  229. Tsukatani, Y., K. Suzuki, et al. (1997). “Loss of density-dependent growth inhibition and dissociation of alpha-catenin from E-cadherin.” J Cell Physiol 173(1): 54–63.PubMedCrossRefGoogle Scholar
  230. Ueda, S., H. Tsuda, et al. (2006). “Alternative tyrosine phosphorylation of signaling kinases according to hormone receptor status in breast cancer overexpressing the insulin-like growth factor receptor type 1.” Cancer Sci 97(7): 597–604.PubMedCrossRefGoogle Scholar
  231. van der Kallen, C. J., M. M. van Greevenbroek, et al. (2009). “Endoplasmic reticulum stress-induced apoptosis in the development of diabetes: is there a role for adipose tissue and liver?” Apoptosis 14(12): 1424–34.PubMedCrossRefGoogle Scholar
  232. van Golen, C. M., T. S. Schwab, et al. (2006). “Insulin-like growth factor-I receptor expression regulates neuroblastoma metastasis to bone.” Cancer Res 66(13): 6570–8.PubMedCrossRefGoogle Scholar
  233. van Golen, K. L., L. Bao, et al. (2002). “Reversion of RhoC GTPase-induced inflammatory breast cancer phenotype by treatment with a farnesyl transferase inhibitor.” Mol Cancer Ther 1(8): 575–83.PubMedGoogle Scholar
  234. van Noord P.A. (2004). “Breast cancer and the brain: a neurodevelopmental hypothesis to explain the opposing effects of caloric deprivation during the Dutch famine of 1944–1945 on breast cancer and its risk factors.” J Nutr 134(12 Suppl): 3399S–3406S.PubMedGoogle Scholar
  235. Van Saun M.N., I.K. Lee et al. (2009). “High fat diet induced hepatic steatosis establishes a permissive microenvironment for colorectal metastases and promotes primary dysplasia in a murine model.” Am J Pathol 175(1): 355–64.CrossRefGoogle Scholar
  236. Vasilcanu D., A. Girnita et al. (2004). “The cyclolignan PPP induces activation loop- specific inhibition of tyrosine phosphorylation of the insulin-like growth factor-1 receptor. Link to the phosphatidyl inositol-3 kinase/Akt apoptotic pathway.” Oncogene 23(47): 7854–62.PubMedCrossRefGoogle Scholar
  237. Vasioukhin, V., C. Bauer, et al. (2000). “Directed actin polymerization is the driving force for epithelial cell-cell adhesion.” Cell 100(2): 209–19.PubMedCrossRefGoogle Scholar
  238. Vousden, K. H. (2000). “p53: death star.” Cell 103(5): 691–4.PubMedCrossRefGoogle Scholar
  239. Vyas, D. R., E. E. Spangenburg, et al. (2002). “GSK-3beta negatively regulates skeletal myotube hypertrophy.” Am J Physiol Cell Physiol 283(2): C545–51.PubMedGoogle Scholar
  240. Wahner Hendrickson A.E., P. Haluska et al (2009). “Expression of insulin receptor isoform A and insulin-like growth factor-1 receptor in human acute myelogenous leukemia: effect of the dual-receptor inhibitor BMS-536924 in vitro.” Cancer Res 69(19): 7635–43. In press.Google Scholar
  241. Wan X., B. Harkavy et al. (2006). “Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism.” Oncogene 26(13): 1932–40.PubMedCrossRefGoogle Scholar
  242. Wang, F., P. Herzmark, et al. (2002). “Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils.” Nat Cell Biol 4(7): 513–8.PubMedCrossRefGoogle Scholar
  243. Wang, L., Y. Y. Shao, et al. (2010). “Thyroid hormone-mediated growth and differentiation of growth plate chondrocytes involves IGF-1 modulation of beta-catenin signaling.” J Bone Miner Res.Google Scholar
  244. Warshamana-Greene G.S., J. Litz et al. (2004). “The insulin-like growth factor-I (IGF-I) receptor kinase inhibitor NVP-ADW742, in combination with STI571, delineates a spectrum of dependence of small cell lung cancer on IGF-I and stem cell factor signaling.” Mol Cancer Ther 3(5): 527–35.PubMedGoogle Scholar
  245. Weiner, O. D., P. O. Neilsen, et al. (2002). “A PtdInsP(3)- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity.” Nat Cell Biol 4(7): 509–13.PubMedCrossRefGoogle Scholar
  246. Werner, H., G. G. Re, et al. (1993). “Increased expression of the insulin-like growth factor I receptor gene, IGF1R, in Wilms tumor is correlated with modulation of IGF1R promoter activity by the WT1 Wilms tumor gene product.” Proc Natl Acad Sci USA 90(12): 5828–32.PubMedCrossRefGoogle Scholar
  247. Werner, H., F. J. Rauscher, et al. (1994). “Transcriptional repression of the insulin-like growth factor I receptor (IGF-I-R) gene by the tumor suppressor WT1 involves binding to sequences both upstream and downstream of the IGF-I-R gene transcription start site.” J Biol Chem 269(17): 12577–82.PubMedGoogle Scholar
  248. Werner, H., E. Karnieli, et al. (1996). “Wild-type and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene.” Proc Natl Acad Sci USA 93(16): 8318–23.PubMedCrossRefGoogle Scholar
  249. Whitelock, J. M., A. D. Murdoch, et al. (1996). “The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases.” J Biol Chem 271(17): 10079–86.PubMedCrossRefGoogle Scholar
  250. Wilker, E., D. Bol, et al. (1999). “Enhancement of susceptibility to diverse skin tumor promoters by activation of the insulin-like growth factor-1 receptor in the epidermis of transgenic mice.” Mol Carcinog 25(2): 122–31.PubMedCrossRefGoogle Scholar
  251. Wolf S., J. Lorenz et al. (2010). “Treatment of biliary tract cancer with NVP-AEW541: mechanisms of action and resistance.” World J Gastroenterol 16(2): 156–66.PubMedCrossRefGoogle Scholar
  252. Wolk, A., C. S. Mantzoros, et al. (1998). “Insulin-like growth factor 1 and prostate cancer risk: a population-based, case-control study.” J Natl Cancer Inst 90(12): 911–5.PubMedCrossRefGoogle Scholar
  253. Woodson, K., J. A. Tangrea, et al. (2003). “Serum insulin-like growth factor I: tumor marker or etiologic factor? A prospective study of prostate cancer among Finnish men.” Cancer Res 63(14): 3991–4.PubMedGoogle Scholar
  254. Wu, Y., S. Yakar, et al. (2002). “Circulating insulin-like growth factor-I levels regulate colon cancer growth and metastasis.” Cancer Res 62(4): 1030–5.PubMedGoogle Scholar
  255. Wu, Y., K. Cui, et al. (2003). “Reduced circulating insulin-like growth factor I levels delay the onset of chemically and genetically induced mammary tumors.” Cancer Res 63(15): 4384–8.PubMedGoogle Scholar
  256. Wu, Y., P. Brodt, et al. (2010)”Insulin-like growth factor-I regulates the liver microenvironment in obese mice and promotes liver metastasis.” Cancer Res 70(1): 57–67.Google Scholar
  257. Xu, J., D. Rodriguez, et al. (2001). “Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo.” J Cell Biol 154(5): 1069–79.PubMedCrossRefGoogle Scholar
  258. Yamaguchi, H., M. Shiraishi, et al. (2009). “MARCKS regulates lamellipodia formation induced by IGF-I via association with PIP2 and beta-actin at membrane microdomains.” J Cell Physiol 220(3): 748–55.PubMedCrossRefGoogle Scholar
  259. Yamazaki, D., S. Kurisu, et al. (2005). “Regulation of cancer cell motility through actin reorganization.” Cancer Sci 96(7): 379–86.PubMedCrossRefGoogle Scholar
  260. Yang, X. F., W. G. Beamer, et al. (1996). “Reduced growth of human breast cancer xenografts in hosts homozygous for the lit mutation.” Cancer Res 56(7): 1509–11.PubMedGoogle Scholar
  261. Yao, H., E. J. Dashner, et al. (2006). “RhoC GTPase is required for PC-3 prostate cancer cell invasion but not motility.” Oncogene 25(16): 2285–96.PubMedCrossRefGoogle Scholar
  262. Ye, P., Q. Hu, et al. (2010) “beta-catenin mediates insulin-like growth factor-I actions to promote cyclin D1 mRNA expression, cell proliferation and survival in oligodendroglial cultures.” Glia.Google Scholar
  263. Yu, H. and T. Rohan (2000). “Role of the insulin-like growth factor family in cancer development and progression.” J Natl Cancer Inst 92(18): 1472–89.PubMedCrossRefGoogle Scholar
  264. Yu, H., M. R. Spitz, et al. (1999). “Plasma levels of insulin-like growth factor-I and lung cancer risk: a case-control analysis.” J Natl Cancer Inst 91(2): 151–6.PubMedCrossRefGoogle Scholar
  265. Yuen, J. S., M. E. Cockman, et al. (2007). “The VHL tumor suppressor inhibits expression of the IGF1R and its loss induces IGF1R upregulation in human clear cell renal carcinoma.” Oncogene 26(45): 6499–508.PubMedCrossRefGoogle Scholar
  266. Zhang, D., M. Bar-Eli et al (2004). Dual regulation of MMP-2 Expression by the Type 1 insulin-like Growth Factor Receptor. Journal Biol Chem 279: 19683–19690.CrossRefGoogle Scholar
  267. Zhang, X. and D. Yee (2002). “Insulin-like Growth Factor Binding Protein-1 (IGFBP-1) inhibits Breast Cancer Cell Motility”. Cancer Res 62: 4369–75.PubMedGoogle Scholar
  268. Zhang, X., S. Kamaraju, et al. (2004). “Motility response to insulin-like growth factor-I (IGF-I) in MCF-7 cells is associated with IRS-2 activation and integrin expression.” Breast Cancer Res Treat 83(2): 161–70.PubMedCrossRefGoogle Scholar
  269. Zhang, X., M. Lin, et al. (2005). “Multiple signaling pathways are activated during insulin-like growth factor-I (IGF-I) stimulated breast cancer cell migration.” Breast Cancer Res Treat 93(2): 159–68.PubMedCrossRefGoogle Scholar
  270. Zhao, H., J. Dupont, et al. (2004). “PTEN inhibits cell proliferation and induces apoptosis by downregulating cell surface IGF-IR expression in prostate cancer cells.” Oncogene 23(3): 786–94.PubMedCrossRefGoogle Scholar
  271. Zhao, H., H. B. Grossman, et al. (2003). “Plasma levels of insulin-like growth factor-1 and binding protein-3, and their association with bladder cancer risk.” J Urol 169(2): 714–7.PubMedCrossRefGoogle Scholar
  272. Zhau, H. E., V. Odero-Marah, et al. (2008). “Epithelial to mesenchymal transition (EMT) in human prostate cancer: lessons learned from ARCaP model.” Clin Exp Metastasis 25(6): 601–10.PubMedCrossRefGoogle Scholar
  273. Zhong, H., K. Chiles, et al. (2000). “Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics.” Cancer Res 60(6): 1541–5.PubMedGoogle Scholar
  274. Zou, C. G., X. Z. Cao, et al. (2009). “The molecular mechanism of endoplasmic reticulum stress-induced apoptosis in PC-12 neuronal cells: the protective effect of insulin-like growth factor I.” Endocrinology 150(1): 277–85.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rosalyn D. Ferguson
    • 1
  • Nyosha Alikhani
    • 1
  • Archana Vijayakumar
    • 1
  • Yvonne Fierz
    • 1
  • Dara Cannata
    • 1
  • Shoshana Yakar
    • 1
    Email author
  1. 1.Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of MedicineMount Sinai School of MedicineNew YorkUSA

Personalised recommendations