Advertisement

The Role of Insulin-Like Growth Factor Signaling in Prostate Cancer Development and Progression

  • Bruce Montgomery
  • James Dean
  • Stephen PlymateEmail author
Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

The insulin-like growth factor (IGF) pathway plays a critical role in the development and progression of multiple human malignancies, but the data are particularly compelling for a role in prostate cancer. IGF ligands and the insulin-like growth factor receptor-1 (IGF-IR) signal through multiple pathways, including the MAPK, PI-3K, and androgen receptor (AR). In this chapter, we review some of the published data on the mechanisms of IGF-IR signaling with a focus on IGF-IR and AR interaction and present new evidence that IGF-IR signaling may modulate AR localization and thus alter AR activity in prostate cancer cells. Multiple fully humanized antibodies targeting the IGF-IR are now in clinical trials, and this review is intended to reveal the mechanisms of potential therapeutic effects of these antibodies on prostate cancer. Targeting IGF and the IGF1-R holds significant promise for improving treatment for men with prostate cancer.

Keywords

Prostate Cancer Androgen Receptor Prostate Cancer Progression Androgen Receptor Signaling Insulin Degrading Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Samani AA, Yakar S, LeRoith D, Brodt P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev 2007;28(1):20–47.PubMedCrossRefGoogle Scholar
  2. Scher H, Sawyers C. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol 2005;23(32):8235–61.CrossRefGoogle Scholar
  3. Taplin M, Balk S. Androgen receptor: a key molecule in the progression of prostate cancer to hormone independence. J Cell Biochem 2004;15:483–90.CrossRefGoogle Scholar
  4. Pandini G, Mineo R, Frasca F, Roberts CT, Jr., Marcelli M, Vigneri R, Belfiore A. Androgens up-regulate the insulin-like growth factor-I receptor in prostate cancer cells. Cancer Res 2005;65(5):1849–57.PubMedCrossRefGoogle Scholar
  5. Mohler J, Gregory C, Ford III O, Kim D, Weaver C, Petrusz P, Wilson E, French F. The Androgen Axis in Recurrent Prostate Cancer. Clinical Cancer Res 2004;10(2):440–8.CrossRefGoogle Scholar
  6. Gregory C, He B, Johnson R, Ford O, Mohler J, French F, Wilson E. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res 2001;61:4315–9.PubMedGoogle Scholar
  7. Titus M, Schell M, Lih F, Tomer K, Mohler J. Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res 2005;11(13):4653–7.PubMedCrossRefGoogle Scholar
  8. Page ST, Lin DW, Mostaghel EA, Hess DL, True LD, Amory JK, Nelson PS, Matsumoto AM, Bremner WJ. Persistent intraprostatic androgen concentrations after medical castration in healthy men. J Clin Endocrinol Metab 2006;91(10):3850–6.PubMedCrossRefGoogle Scholar
  9. Mostaghel EA, Page ST, Lin DW, Fazli L, Coleman IM, True LD, Knudsen B, Hess DL, Nelson CC, Matsumoto AM, Bremner WJ, Gleave ME, Nelson PS. Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res 2007;67(10):5033–41.PubMedCrossRefGoogle Scholar
  10. van Weerden WM, Bierings HG, van Steenbrugge GJ, de Jong FH, Schroder FH. Adrenal glands of mouse and rat do not synthesize androgens. Life Sci 1992;50(12):857–61.PubMedCrossRefGoogle Scholar
  11. Corey E, Quinn J, Buhler K, Nelson P, Macoska J, True L, Lange P, Vessella R. LuCaP 35: A New Model of Prostate Cancer Progression to Androgen Independence. Prostate 2003;55(4):239–46.PubMedCrossRefGoogle Scholar
  12. Thalmann G, Sikes R, Wu T, Degeorges A, Chang S, Ozen M, Pathak S, Chung L. LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. The Prostate 2000;44:91–103.PubMedCrossRefGoogle Scholar
  13. Wu J, Haugk K, Woodke L, Nelson P, Coleman I, Plymate S. Interaction of IGF signaling and the androgen receptor in prostate cancer progression. J Cell Biochem 2006;99:392–401.PubMedCrossRefGoogle Scholar
  14. Fujimoto N, Yeh S, Kang H, Inui S, Chang H, Mizokami A, Chang C. Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate. Journal of Biological Chemistry 1999;274:8316–21.PubMedCrossRefGoogle Scholar
  15. Kang J, Bell J, Beard R, Chandraratna R. Mannose 6-phosphate/insulin-like growth factor II receptor mediates the growth-inhibitory effects of retinoids. Cell Growth and Differentiation 1999;10:591–600.PubMedGoogle Scholar
  16. Sadar M. Androgen-independent induction of prostate-specific antigen gene expression via cross-talk between the androgen receptor and protein kinase A signal transduction pathways. J Biol Chem 1999;274(12):7777–83.PubMedCrossRefGoogle Scholar
  17. Sadar M, Gleave M. Ligand-independent activation of the androgen receptor by the differentiation agent butyrate in human prostate cancer cells. Cancer Res 2000;60(20):5825–31.PubMedGoogle Scholar
  18. Culig Z, Hobisch A, Cronauer M, Radmayr C, Trapman J, Hittmair A, Bartsch G, Klocker H. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor and epidermal growth factor. Eur Urol 1995;27(suppl 2):45–7.PubMedGoogle Scholar
  19. Culig Z, Hobisch A, Cronauer M, Radmayr J, Hittmair A, Bartsch G, Klocker H. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, Keratinocyte growth factor, and epidermal growth factor. Cancer Research 1994;54(20):5474–8.PubMedGoogle Scholar
  20. Lin H, Yeh S, Kang H, Chang C. Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. PNAS 2001;98:7200–5.PubMedCrossRefGoogle Scholar
  21. Majeed N, Blouin M, Kaplan-Lefko P, Barry-Shaw J, Greenberg N, Gaudreau P, Bismar T, Pollak M. A germ line mutation that delays prostate cancer progression and prolongs survival in a murine prostate cancer model. Oncogene 2005;24:4736–40.PubMedCrossRefGoogle Scholar
  22. Hongo A, Yumet G, Resnicoff M, Romano G, O’Connor R, Baserga R. Inhibition of tumorigenesis and induction of apoptosis in human tumor cells by the stable transfection of a myristylated COOH terminus of the insulin-like growth factor 1 receptor. Cancer Research 1998;58:2477–84.PubMedGoogle Scholar
  23. O’Connor R, Kauffmann-Zeh A, Liu Y, Lehar S, Evan G, Baserga R, Blatter W. Identification of domains of the insulin-like growth factor I receptor that are required for protection from apoptosis. mol and cell biol 1997;17:427–35.Google Scholar
  24. Tennant MK, Thrasher JB, Twomey PA, Drivdahl RH, Birnbaum RS, Plymate SR. Protein and messenger ribonucleic acid (mRNA) for the type 1 insulin-like growth factor (IGF) receptor is decreased and IGF-II mRNA is increased in human prostate carcinoma compared to benign prostate epithelium. J Clin Endocrinol Metab 1996;81(10):3774–82.PubMedCrossRefGoogle Scholar
  25. Plymate SR, Bae VL, Maddison L, Quinn LS, Ware JL. Reexpression of the type 1 insulin-like growth factor receptor inhibits the malignant phenotype of simian virus 40 T antigen immortalized human prostate epithelial cells. Endocrinology 1997;138(4):1728–35.PubMedCrossRefGoogle Scholar
  26. Plymate SS, Bae VL, Maddison L, Quinn LS, Ware JL. Type-1 insulin-like growth factor receptor reexpression in the malignant phenotype of SV40-T-immortalized human prostate epithelial cells enhances apoptosis. Endocrine 1997;7(1):119–24.PubMedCrossRefGoogle Scholar
  27. Plymate S, Tennant M, Culp S, Woodke L, Marcelli M, Colman I, Nelson P, Carroll J, Roberts C, Ware J. Androgen receptor (AR) expression in AR-negative prostate cancer cells results in differential effects of DHT and IGF-I on proliferation and AR activity between localized and metastatic tumors. Prostate 2004;61(3):276–90.PubMedCrossRefGoogle Scholar
  28. Rubinstein M, Idelman G, Plymate SR, Narla G, Friedman SL, Werner H. Transcriptional activation of the insulin-like growth factor I receptor gene by the Kruppel-like factor 6 (KLF6) tumor suppressor protein: potential interactions between KLF6 and p53. Endocrinology 2004;145(8):3769–77.PubMedCrossRefGoogle Scholar
  29. Gioeli D, Ficarro S, Kwiek J, Aaronson D, Hancock M, Catling A, White F, Christian R, Settlage R, Shabanowitz J, Hunt D, Weber M. Androgen Receptor Phosphorlyation:Regulation and Identification of the phosphorylation sites. J Biol Chem 2002;277:29304–14.PubMedCrossRefGoogle Scholar
  30. Gioeli D, Black B, Gordon V, Spencer A, Kesler C, Eblen S, Paschal B, Weber M. Stress Kinase Signaling Regulates Androgen Receptor Phosphorylation, Transcription, and Localization. Mol Endocrinol 2006;20:505–15.Google Scholar
  31. Plymate SR, Haugk K, Coleman I, Woodke L, Vessella R, Nelson P, Montgomery RB, Ludwig DL, Wu JD. An antibody targeting the type I insulin-like growth factor receptor enhances the castration-induced response in androgen-dependent prostate cancer. Clin Cancer Res 2007;13(21):6429–39.PubMedCrossRefGoogle Scholar
  32. Wu JD, Odman A, Higgins LM, Haugk K, Vessella R, Ludwig DL, Plymate SR. In vivo effects of the human type I insulin-like growth factor receptor antibody A12 on androgen-dependent and androgen-independent xenograft human prostate tumors. Clin Cancer Res 2005;11(8):3065–74.PubMedCrossRefGoogle Scholar
  33. Miyake H, Nelson C, Rennie P, Gleave M. Overexpression of Insulin-Like Growth Factor Binding Protein-5 Helps Accelerate Progression to Androgen-Independence in the Human Prostate LNCaP Tumor Modelthrough Activation of Phosphatidylinositol 3-Kinase Pathway. Endocrinology 2000;141:2257–65.PubMedCrossRefGoogle Scholar
  34. Miyake H, Pollak M, Gleave M. Castration-induced up-regulation of insulin-like growth fator binding protein-5 potentiates insulin-like growth factor I activity and accelerates progression to androgen independence in prostate cancer models. Cancer Research 2000;60:3058–64.PubMedGoogle Scholar
  35. Sprenger CC, Haugk K, Sun S, Coleman I, Nelson PS, Vessella RL, Ludwig DL, Wu JD, Plymate SR. Transforming Growth Factor-{beta}-Stimulated Clone-22 Is an Androgen-Regulated Gene That Enhances Apoptosis in Prostate Cancer following Insulin-Like Growth Factor-I Receptor Inhibition. Clin Cancer Res 2009;15(24):7634–41.PubMedCrossRefGoogle Scholar
  36. Jones J, Clemmons D. Insulin-like growth factors and their binding proteins: biological actions. Endoc Rev 1995;16:3–34.Google Scholar
  37. Kiyama S, Morrison K, Zellweger T, Akbari M, Cox M, Yu D, Miyake H, Gleave M. Castration-induced increases in insulin-like growth factor-binding protein 2 promotes proliferation of androgen-independent human prostate LNCaP tumors. Cancer Research 2003;63:3575–84.PubMedGoogle Scholar
  38. Russo V, Schutt B, Andaloro E, Ymer S, Hoeflich A, Ranke M, LA B, Werther G. Insulin-like growth factor binding protein-2 binding to extracellular matrix plays a critical role in neuroblastoma cell proliferation, migration, and invasion. Endocrinology 2005;146:4445–55.Google Scholar
  39. Zhang M, Latham DE, Delaney MA, Chakravarti A. Survivin mediates resistance to antiandrogen therapy in prostate cancer. Oncogene 2005;24(15):2474–82.PubMedCrossRefGoogle Scholar
  40. Kupfer S, Wilson E, French F. Androgen and glucocorticoid receptors interact with insulin degrading enzyme. J Biol Chem 1994;269:20622–8.PubMedGoogle Scholar
  41. Udrisar D, Wanderley M, Porto R, Cardoso C, Barbosa M, Camberos M, Cresto J. Androgen- and estrogen-dependent regulation of insulin-degrading enzyme in subcellular fractions of rat prostate and uterus. Exp Biol Med 2005;230:479–86.Google Scholar
  42. DiGiovanni J, Kiguchi K, Frijhoff A, Wilker E, Bol D, Beltran L, Moats S, Ramirez A, Jorcano J, Conti C. Deregulated expression of insulin-like growth factor 1 in prostate epithelium leads to neoplasia in transgenic mice. Proc Natl Acad Sci 2000;97:3455–60.PubMedCrossRefGoogle Scholar
  43. Wang L, Ma W, Markovich R, Lee W, Wang P. IGF-I modulates induction of apoptotic signaling in H9C2 Cardiac muscle cells. endo 1998;139:1354–60.Google Scholar
  44. Chan J, Stampfer M, Giovannucci E, Gann P, Ma J, Wilkinson P, Hennekens C, Pollak M. Plasma Insulin-like Growth Factor-I and Prostate Cancer Risk: A Prospective Study. Science 1998;279:563–71.PubMedCrossRefGoogle Scholar
  45. Roddam AW, Allen NE, Appleby P, Key TJ, Ferrucci L, Carter HB, Metter EJ, Chen C, Weiss NS, Fitzpatrick A, Hsing AW, Lacey JV, Jr., Helzlsouer K, Rinaldi S, Riboli E, Kaaks R, Janssen JA, Wildhagen MF, Schroder FH, Platz EA, Pollak M, Giovannucci E, Schaefer C, Quesenberry CP, Jr., Vogelman JH, Severi G, English DR, Giles GG, Stattin P, Hallmans G, Johansson M, Chan JM, Gann P, Oliver SE, Holly JM, Donovan J, Meyer F, Bairati I, Galan P. Insulin-like growth factors, their binding proteins, and prostate cancer risk: analysis of individual patient data from 12 prospective studies. Ann Intern Med 2008;149(7):461–71, W83-8.Google Scholar
  46. Rowlands MA, Gunnell D, Harris R, Vatten LJ, Holly JM, Martin RM. Circulating insulin-like growth factor peptides and prostate cancer risk: a systematic review and meta-analysis. Int J Cancer 2009;124(10):2416–29.PubMedCrossRefGoogle Scholar
  47. Tsuchiya N, Wang L, Horikawa Y, Inoue T, Kakinuma H, Matsuura S, Sato K, Ogawa O, Kato T, Habuchi T. CA repeat polymorphism in the insulin-like growth factor-I gene is associated with increased risk of prostate cancer and benign prostatic hyperplasia. Int J Oncol 2005;26(1):225–31.PubMedGoogle Scholar
  48. Tsuchiya N, Wang L, Suzuki H, Segawa T, Fukuda H, Narita S, Shimbo M, Kamoto T, Mitsumori K, Ichikawa T, Ogawa O, Nakamura A, Habuchi T. Impact of IGF-I and CYP19 gene polymorphisms on the survival of patients with metastatic prostate cancer. J Clin Oncol 2006;24(13):1982–9.PubMedCrossRefGoogle Scholar
  49. Yu H, Nicar MR, Shi R, Berkel HJ, Nam R, Trachtenberg J, Diamandis EP. Levels of insulin-like growth factor I (IGF-I) and IGF binding proteins 2 and 3 in serial postoperative serum samples and risk of prostate cancer recurrence. Urology 2001;57(3):471–5.PubMedCrossRefGoogle Scholar
  50. Shariat SF, Lamb DJ, Kattan MW, Nguyen C, Kim J, Beck J, Wheeler TM, Slawin KM. Association of preoperative plasma levels of insulin-like growth factor I and insulin-like growth factor binding proteins-2 and -3 with prostate cancer invasion, progression, and metastasis. J Clin Oncol 2002;20(3):833–41.PubMedCrossRefGoogle Scholar
  51. Molife LR, Fong PC, Paccagnella L, Reid AH, Shaw HM, Vidal L, Arkenau HT, Karavasilis V, Yap TA, Olmos D, Spicer J, Postel-Vinay S, Yin D, Lipton A, Demers L, Leitzel K, Gualberto A, de Bono JS. The insulin-like growth factor-I receptor inhibitor figitumumab (CP-751,871) in combination with docetaxel in patients with advanced solid tumours: results of a phase Ib dose-escalation, open-label study. Br J Cancer 2010;103(3):332–9.PubMedCrossRefGoogle Scholar
  52. Sachdev D. Targeting the Type I Insulin-Like Growth Factor System for Breast Cancer Therapy. Curr Drug Targets 2010.Google Scholar
  53. Sachdev D, Zhang X, Matise I, Gaillard-Kelly M, Yee D. The type I insulin-like growth factor receptor regulates cancer metastasis independently of primary tumor growth by promoting invasion and survival. Oncogene 2009;29(2):251–62.PubMedCrossRefGoogle Scholar
  54. Nickerson T, Chang F, Lorimer D, Smeekens SP, Sawyers CL, Pollak M. In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR). Cancer Res 2001;61(16):6276–80.PubMedGoogle Scholar
  55. Burfeind P, Chernicky CL, Rininsland F, Ilan J. Antisense RNA to the type I insulin-like growth factor receptor suppresses tumor growth and prevents invasion by rat prostate cancer cells in vivo. Proc Natl Acad Sci USA 1996;93(14):7263–8.PubMedCrossRefGoogle Scholar
  56. Rochester MA, Riedemann J, Hellawell GO, Brewster SF, Macaulay VM. Silencing of the IGF1R gene enhances sensitivity to DNA-damaging agents in both PTEN wild-type and mutant human prostate cancer. Cancer Gene Ther 2005;12(1):90–100.PubMedCrossRefGoogle Scholar
  57. Montgomery RB, Mostaghel EA, Vessella R, Hess DL, Kalhorn TF, Higano CS, True LD, Nelson PS. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 2008;68(11):4447–54.PubMedCrossRefGoogle Scholar
  58. Chott A, Sun Z, Morganstern D, Pan J, Li T, Susani M, Mosberger I, Upton MP, Bubley GJ, Balk SP. Tyrosine kinases expressed in vivo by human prostate cancer bone marrow metastases and loss of the type 1 insulin-like growth factor receptor. Am J Pathol 1999;155(4):1271–9.PubMedCrossRefGoogle Scholar
  59. Hellawell GO, Turner GD, Davies DR, Poulsom R, Brewster SF, Macaulay VM. Expression of the type 1 insulin-like growth factor receptor is up-regulated in primary prostate cancer and commonly persists in metastatic disease. Cancer Res 2002;62(10):2942–50.PubMedGoogle Scholar
  60. Krueckl SL, Sikes RA, Edlund NM, Bell RH, Hurtado-Coll A, Fazli L, Gleave ME, Cox ME. Increased insulin-like growth factor I receptor expression and signaling are components of androgen-independent progression in a lineage-derived prostate cancer progression model. Cancer Res 2004;64(23):8620–9.PubMedCrossRefGoogle Scholar
  61. Ryan CJ, Haqq CM, Simko J, Nonaka DF, Chan JM, Weinberg V, Small EJ, Goldfine ID. Expression of insulin-like growth factor-1 receptor in local and metastatic prostate cancer. Urol Oncol 2007;25(2):134–40.PubMedCrossRefGoogle Scholar
  62. Schmitz M, Grignard G, Margue C, Dippel W, Capesius C, Mossong J, Nathan M, Giacchi S, Scheiden R, Kieffer N. Complete loss of PTEN expression as a possible early prognostic marker for prostate cancer metastasis. Int J Cancer 2007;120(6):1284–92.PubMedCrossRefGoogle Scholar
  63. Chi N, al e. A phase II study of preoperative figitumumab (F) in patients (pts) with localized prostate cancer (PCa). J Clin Oncol 2010;28(abstr 4662).Google Scholar
  64. Dean JP, al e. Neoadjuvant IMC-A12 and combined androgen deprivation with prostatectomy for high-risk prostate cancer: J Clin Oncol 2010;28(15s, abstr TPS251).Google Scholar
  65. Higano CS, al e. A phase II study of cixutumumab (IMC-A12), a monoclonal antibody (MAb) against the insulin-like growth factor 1 receptor (IGF-IR), monotherapy in metastatic castration-resistant prostate cancer (mCRPC): Feasibility of every 3-week dosing and updated results.. Proc ASCO GU Cancers Symposium, 2010 2010;abstr 189.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Bruce Montgomery
    • 1
    • 2
  • James Dean
    • 1
  • Stephen Plymate
    • 3
    • 4
    Email author
  1. 1.Division of Oncology, Department of MedicineUniversity of Washington, Seattle Cancer Care AllianceSeattleUSA
  2. 2.VA Puget Sound Health Care SystemSeattleUSA
  3. 3.VA Puget Sound Health Care SystemSeattleUSA
  4. 4.Division of Geriatrics and Gerontology, Department of MedicineUniversity of Washington School of MedicineSeattleUSA

Personalised recommendations