Skip to main content

Cancer Cell Metabolism

  • Chapter
  • First Online:
Insulin-like Growth Factors and Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 790 Accesses

Abstract

Human cancers result from multiple molecular aberrations, which act in concert with both the tumor microenvironment and metabolic macroenvironment to produce the malignant phenotype. Cancer cells exhibit fundamental differences in both anabolic and catabolic metabolism relative to their normal counterparts. Understanding cancer, the metabolic rewiring of cells that drives transformation may provide novel, selective therapeutic opportunities. This altered metabolism of cancer cells appears to be multifaceted involving the energy sensing machinery, as well as fatty acid, amino acid, and glycolytic metabolism. In this chapter, we describe several important features of the differential metabolism in cancer cells that may contribute to the development of a selective growth, proliferation, and survival advantage. We conclude with a summary of pharmaceutical interventions already in clinical use or currently under investigation that target this altered metabolism in human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Calle, E.E., et al., Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. New England Journal of Medicine, 2003. 348(17): p. 1625–1638.

    Article  PubMed  Google Scholar 

  • Michalakis, K., et al., Serum adiponectin concentrations and tissue expression of adiponectin receptors are reduced in patients with prostate cancer: A case control study. Cancer Epidemiology Biomarkers & Prevention, 2007. 16(2): p. 308–313.

    Article  CAS  Google Scholar 

  • Zakikhani, M., et al., The Effects of Adiponectin and Metformin on Prostate and Colon Neoplasia Involve Activation of AMP-Activated Protein Kinase. Cancer Prevention Research, 2008. 1(5): p. 369–375.

    Article  PubMed  CAS  Google Scholar 

  • Hardie, D.G., AMPK: a key regulator of energy balance in the single cell and the whole organism. International Journal of Obesity, 2008. 32: p. S7–S12.

    Article  PubMed  CAS  Google Scholar 

  • Woods, A., et al., LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol, 2003. 13(22): p. 2004–8.

    Article  PubMed  CAS  Google Scholar 

  • Jenne, D.E., et al., Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nature Genetics, 1998. 18(1): p. 38–44.

    Article  PubMed  CAS  Google Scholar 

  • Orlova, K.A., et al., STRAD alpha deficiency results in aberrant mTORC1 signaling during corticogenesis in humans and mice. Journal of Clinical Investigation, 2010. 120(5): p. 1591–1602.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, H.B., et al., Lkb1 deficiency causes prostate neoplasia in the mouse. Cancer Research, 2008. 68(7): p. 2223–2232.

    Article  PubMed  CAS  Google Scholar 

  • Shackelford, D.B. and R.J. Shaw, The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nature Reviews Cancer, 2009. 9(8): p. 563–575.

    Article  PubMed  CAS  Google Scholar 

  • Luo, Z.J., et al., AMPK, the metabolic syndrome and cancer. Trends in Pharmacological Sciences, 2005. 26(2): p. 69–76.

    Article  PubMed  CAS  Google Scholar 

  • Ruderman, N. and M. Prentki, AMP kinase and malonyl-CoA: Targets for therapy of the metabolic syndrome. Nature Reviews Drug Discovery, 2004. 3(4): p. 340–351.

    Article  PubMed  CAS  Google Scholar 

  • Horikoshi, M., et al., A polymorphism in the AMPK alpha 2 subunit gene is associated with insulin resistance and type 2 diabetes in the Japanese population. Diabetes, 2006. 55(4): p. 919–923.

    Article  PubMed  CAS  Google Scholar 

  • Viollet, B., et al., Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models. Biochemical Society Transactions, 2003. 31: p. 216–219.

    Article  PubMed  CAS  Google Scholar 

  • Matsui, H., et al., Genomewide linkage analysis of familial prostate cancer in the Japanese population. Journal of Human Genetics, 2004. 49(1): p. 9–15.

    Article  PubMed  CAS  Google Scholar 

  • Takane, H., et al., Polymorphism in human organic cation transporters and metformin action. Pharmacogenomics, 2008. 9(4): p. 415–422.

    Article  PubMed  CAS  Google Scholar 

  • Algire, C., et al., Metformin attenuates the stimulatory effect of a high-energy diet on in vivo LLC1 carcinoma growth. Endocrine-Related Cancer, 2008. 15(3): p. 833–839.

    Article  PubMed  CAS  Google Scholar 

  • Wakil, S.J., FATTY-ACID SYNTHASE, A PROFICIENT MULTIFUNCTIONAL ENZYME. Biochemistry, 1989. 28(11): p. 4523–4530.

    Article  PubMed  CAS  Google Scholar 

  • Menendez, J.A. and R. Lupu, Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nature Reviews Cancer, 2007. 7(10): p. 763–777.

    Article  PubMed  CAS  Google Scholar 

  • Pizer, E.S., et al., Fatty acid synthase (FAS): A target for cytotoxic antimetabolites in HL60 promyelocytic leukemia cells. Cancer Research, 1996. 56(4): p. 745–751.

    PubMed  CAS  Google Scholar 

  • Wang, W.Q., et al., Increased fatty acid synthase as a potential therapeutic target in multiple myeloma. Journal of Zhejiang University-Science B, 2008. 9(6): p. 441–447.

    Article  PubMed  CAS  Google Scholar 

  • Kuhajda, F.P., Fatty acid synthase and cancer: New application of an old pathway. Cancer Research, 2006. 66(12): p. 5977–5980.

    Article  PubMed  CAS  Google Scholar 

  • Menendez, J.A., et al., Pharmacological inhibition of fatty acid synthase (FAS): A novel therapeutic approach for breast cancer chemoprevention through its ability to suppress Her-2/neu (erbB-2) oncogene-induced malignant transformation. Molecular Carcinogenesis, 2004. 41(3): p. 164–178.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, D.T., R. Bigelow, and J.A. Cardelli, Inhibition of fatty acid synthase by luteolin post-transcriptionally down-regulates c-Met expression independent of proteosomal/lysosomal degradation. Molecular Cancer Therapeutics, 2009. 8(1): p. 214–224.

    Article  PubMed  CAS  Google Scholar 

  • Engelman, J.A., J. Luo, and L.C. Cantley, The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet, 2006. 7(8): p. 606–19.

    Article  PubMed  CAS  Google Scholar 

  • Swinnen, J.V., et al., Selective activation of the fatty acid synthesis pathway in human prostate cancer. International Journal of Cancer, 2000. 88(2): p. 176–179.

    Article  CAS  Google Scholar 

  • Rossi, S., et al., Fatty acid synthase molecular signatures expression defines distinct in prostate cancer. Molecular Cancer Research, 2003. 1(10): p. 707–715.

    PubMed  CAS  Google Scholar 

  • Ettinger, S.L., et al., Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Research, 2004. 64(6): p. 2212–2221.

    Article  PubMed  CAS  Google Scholar 

  • Sansal, I. and W.R. Sellers, The biology and clinical relevance of the PTEN tumor suppressor pathway. Journal of Clinical Oncology, 2004. 22(14): p. 2954–2963.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, D.K., et al., Monoacylglycerol Lipase Regulates a Fatty Acid Network that Promotes Cancer Pathogenesis. Cell, 2010. 140(1): p. 49–61.

    Article  PubMed  CAS  Google Scholar 

  • Sreekumar, A., et al., Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 2009. 457(7231): p. 910–914.

    Article  PubMed  CAS  Google Scholar 

  • Warburg, O., On the origin of cancer cells. Science, 1956. 123(3191): p. 309–14.

    Article  PubMed  CAS  Google Scholar 

  • Warburg, O., K. Posener, and E. Negelein, Ueber den Stoffwechsel der Tumoren Biochemische Zeitschrift, 1924. 152: p. 319–344.

    Google Scholar 

  • Deberardinis, R.J., et al., The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab, 2008. 7(1): p. 11–20.

    Article  PubMed  CAS  Google Scholar 

  • VanderHeiden, M.G., L.C. Cantley, and C.B. Thompson, Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009. 324(5930): p. 1029–33.

    Article  PubMed  CAS  Google Scholar 

  • Locasale, J.W., L.C. Cantley, and M.G. Vander Heiden, Cancer’s insatiable appetite. Nature Biotechnology, 2009. 27(10): p. 916–917.

    Article  PubMed  CAS  Google Scholar 

  • Yun, J., et al., Glucose Deprivation Contributes to the Development of KRAS Pathway Mutations in Tumor Cells. Science, 2009. 18; 325(5947): p. 1555–9.

    Google Scholar 

  • Manning, B.D. and L.C. Cantley, AKT/PKB signaling: Navigating downstream. Cell, 2007. 129(7): p. 1261–1274.

    Article  PubMed  CAS  Google Scholar 

  • Bensaad, K., et al., TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 2006. 126(1): p. 107–20.

    Article  PubMed  CAS  Google Scholar 

  • Laplante, M. and D.M. Sabatini, mTORC1 activates SREBP-1c and uncouples lipogenesis from gluconeogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(8): p. 3281–3282.

    Article  PubMed  CAS  Google Scholar 

  • Kaelin, W.G., Jr. and P.J. Ratcliffe, Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell, 2008. 30(4): p. 393–402.

    Google Scholar 

  • Meyer, N. and L.Z. Penn, MYC - TIMELINE Reflecting on 25 years with MYC. Nature Reviews Cancer, 2008. 8(12): p. 976–990.

    Article  PubMed  CAS  Google Scholar 

  • Beroukhim, R., et al., The landscape of somatic copy-number alteration across human cancers. Nature, 2010. 463(7283): p. 899–905.

    Article  PubMed  CAS  Google Scholar 

  • Wise, D.R., et al., Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A, 2008. 105(48): p. 18782–7.

    Article  PubMed  CAS  Google Scholar 

  • DeBerardinis, R.J., et al., Brick by brick: metabolism and tumor cell growth. Current Opinion in Genetics & Development, 2008. 18(1): p. 54–61.

    Article  CAS  Google Scholar 

  • David, C.J., et al., HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature, 2010. 463(7279): p. 364-U114.

    Article  PubMed  CAS  Google Scholar 

  • Dang, C.V., et al., The interplay between MYC and HIF in cancer. Nat Rev Cancer, 2008. 8(1): p. 51–6.

    Article  PubMed  CAS  Google Scholar 

  • Vousden, K.H. and K.M. Ryan, p53 and metabolism. Nature Reviews Cancer, 2009. 9(10): p. 691–700.

    Article  PubMed  CAS  Google Scholar 

  • Hu, W.W., et al., Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(16): p. 7455–7460.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, S., et al., Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(16): p. 7461–7466.

    Article  PubMed  CAS  Google Scholar 

  • Tennant, D.A., R.V. Duran, and E. Gottlieb, Targeting metabolic transformation for cancer therapy. Nature Reviews Cancer, 2010. 10(4): p. 267–277.

    Article  PubMed  CAS  Google Scholar 

  • Farber, S., et al., TEMPORARY REMISSIONS IN ACUTE LEUKEMIA IN CHILDREN PRODUCED BY FOLIC ACID ANTAGONIST, 4-AMINOPTEROYL-GLUTAMIC ACID (AMINOPTERIN). New England Journal of Medicine, 1948. 238(23): p. 787–793.

    Article  PubMed  CAS  Google Scholar 

  • Jolivet, J., et al., THE PHARMACOLOGY AND CLINICAL USE OF METHOTREXATE. New England Journal of Medicine, 1983. 309(18): p. 1094–1104.

    Article  PubMed  CAS  Google Scholar 

  • Chabner, B.A. and T.G. Roberts, Timeline - Chemotherapy and the war on cancer. Nature Reviews Cancer, 2005. 5(1): p. 65–72.

    Article  PubMed  CAS  Google Scholar 

  • Ben Sahra, I., et al., The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene, 2008. 27(25): p. 3576–3586.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, B., et al., Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature, 2007. 449(7161): p. 496-U14.

    Article  PubMed  CAS  Google Scholar 

  • Cool, B., et al., Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metabolism, 2006. 3(6): p. 403–416.

    Article  PubMed  CAS  Google Scholar 

  • Huang, X., et al., Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem J, 2008. 412(2): p. 211–21.

    Article  PubMed  CAS  Google Scholar 

  • Pang, T., et al., Small molecule antagonizes autoinhibition and activates AMP-activated protein kinase in cells. Journal of Biological Chemistry, 2008. 283(23): p. 16051–16060.

    Article  PubMed  CAS  Google Scholar 

  • Currie, C.J., C.D. Poole, and E.A.M. Gale, The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia, 2009. 52(9): p. 1766–1777.

    Article  PubMed  CAS  Google Scholar 

  • Wright, J.L. and J.L. Stanford, Metformin use and prostate cancer in Caucasian men: results from a population-based case-control study. Cancer Causes & Control, 2009. 20(9): p. 1617–1622.

    Article  Google Scholar 

  • Jiralerspong, S., et al., Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol, 2009. 27(20): p. 3297–302.

    Article  PubMed  CAS  Google Scholar 

  • Dowling, R.J.O., et al., Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Research, 2007. 67(22): p. 10804–10812.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, R.J., et al., The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A, 2004. 101(10): p. 3329–35.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, H.A., et al., Metformin Selectively Targets Cancer Stem Cells, and Acts Together with Chemotherapy to Block Tumor Growth and Prolong Remission (vol 69, pg 7507, 2009). Cancer Research, 2009. 69(22): p. 8832–8833.

    CAS  Google Scholar 

  • Kim, Y.D., et al., Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes, 2008. 57(2): p. 306–314.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, P.J., J.A. Ligibel, and V. Stambolic, Metformin in Breast Cancer: Time for Action. Journal of Clinical Oncology, 2009. 27(20): p. 3271–3273.

    Article  PubMed  CAS  Google Scholar 

  • Hadad, S.M., et al., Histological evaluation of AMPK signalling in primary breast cancer. Bmc Cancer, 2009. 9.

    Google Scholar 

  • Migita, T., et al., Fatty Acid Synthase: A Metabolic Enzyme and Candidate Oncogene in Prostate Cancer. Journal of the National Cancer Institute, 2009. 101(7): p. 519–532.

    Article  PubMed  CAS  Google Scholar 

  • Flavin, R., et al., Fatty acid synthase as a potential therapeutic target in cancer. Future Oncology, 2010. 6(4): p. 551–562.

    Article  PubMed  CAS  Google Scholar 

  • Murtola, T.J., Men Presenting for Radical Prostatectomy on Preoperative Statin Therapy Have Reduced Serum Prostate Specific Antigen EDITORIAL COMMENT. Journal of Urology, 2010. 183(1): p. 124–124.

    Article  PubMed  Google Scholar 

  • Beckers, A., et al., Chemical inhibition of Acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Research, 2007. 67(17): p. 8180–8187.

    Article  PubMed  CAS  Google Scholar 

  • Picchio, M., et al., PET-CT for treatment planning in prostate cancer. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2009. 53(2): p. 245–268.

    PubMed  CAS  Google Scholar 

  • Christofk, H.R., et al., The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 2008. 452(7184): p. 230–3.

    Article  PubMed  CAS  Google Scholar 

  • Boxer, M.B., et al., Evaluation of Substituted N,N’-Diarylsulfonamides as Activators of the Tumor Cell Specific M2 Isoform of Pyruvate Kinase. Journal of Medicinal Chemistry, 2010. 53(3): p. 1048–1055.

    Article  PubMed  CAS  Google Scholar 

  • Stock, C.C., et al., AZASERINE, A NEW TUMOUR-INHIBITORY SUBSTANCE - STUDIES WITH CROCKER MOUSE SARCOMA-180. Nature, 1954. 173(4393): p. 71–72.

    Article  PubMed  CAS  Google Scholar 

  • da Silva, A.P.P., et al., Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate. Biochemical Journal, 2009. 417: p. 717–726.

    Article  Google Scholar 

  • Michelakis, E.D., et al., Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med, 2010. 2(31): p. 31ra34.

    Article  PubMed  CAS  Google Scholar 

  • Fantin, V.R., J. St-Pierre, and P. Leder, Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 2006. 9(6): p. 425–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis C. Cantley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Patnaik, A., Locasale, J.W., Cantley, L.C. (2012). Cancer Cell Metabolism. In: LeRoith, D. (eds) Insulin-like Growth Factors and Cancer. Cancer Drug Discovery and Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0598-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0598-6_13

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0597-9

  • Online ISBN: 978-1-4614-0598-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics