Advertisement

Dark Matter in Elliptical Galaxies

  • David A. Buote
  • Philip J. Humphrey
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 378)

Abstract

We review X-ray constraints on dark matter in giant elliptical galaxies \(({10}^{12}\,{M}_{\odot }\lesssim{M}_{vir} \lesssim1{0}^{13}\,{M}_{\odot })\)obtained using the current generation of X-ray satellites, beginning with an overview of the physics of the hot interstellar medium and mass modeling methodology. Dark matter is now firmly established in many galaxies, with inferred NFW concentration parameters somewhat larger than the mean theoretical relation. X-ray observations confirm that the total mass profile (baryons+DM) is close to isothermal \((M \sim r)\), and new evidence suggests a more general power-law relation for the slope of the total mass profile that varies with the stellar half-light radius. We also discuss constraints on the baryon fraction, super-massive black holes, and axial ratio of the dark matter halo. Finally, we review constraints on non-thermal gas motions and discuss the accuracy of the hydrostatic equilibrium approximation in elliptical galaxies.

Keywords

Dark Matter Galaxy Cluster Hydrostatic Equilibrium Elliptical Galaxy Dark Matter Halo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank W. Mathews, F. Brighenti, S. Ettori, and K. Gebhardt for discussions related to this work. We are grateful to W. Mathews and F. Gastaldello for providing comments on the manuscript. We also would like to express our appreciation to E. O’Sullivan for providing data included in Fig. 8.4. This work was supported in part by the National Aeronautics and Space Administration under Grant No. NNX10AD07G issued through the Astrophysics Data Analysis Program (ADP).

References

  1. M.G. Abadi, J.F. Navarro, M. Fardal, A. Babul, M. Steinmetz, MNRAS 847 (2010). DOI 10.1111/j.1365-2966.2010.16912.xGoogle Scholar
  2. K. Ahn, P.R. Shapiro, MNRAS 363, 1092 (2005). DOI 10.1111/j.1365-2966.2005.09492.xADSGoogle Scholar
  3. S.W. Allen, S. Ettori, A.C. Fabian, MNRAS 324, 877 (2001). DOI 10.1046/j.1365-8711. 2001.04318.xADSGoogle Scholar
  4. B. Allgood, R.A. Flores, J.R. Primack, A.V. Kravtsov, R.H. Wechsler, A. Faltenbacher, J.S. Bullock, MNRAS 367, 1781 (2006). DOI 10.1111/j.1365-2966.2006.10094.xADSGoogle Scholar
  5. C. Amsler et al., Phys. Lett. B667, 1 (2008). DOI 10.1016/j.physletb.2008.07.018ADSGoogle Scholar
  6. G.W. Angus, B. Famaey, D.A. Buote, MNRAS 387, 1470 (2008). DOI 10.1111/j. 1365-2966.2008.13353.xADSGoogle Scholar
  7. J.S. Arabadjis, M.W. Bautz, G.P. Garmire, ApJ 572, 66 (2002). DOI 10.1086/340296ADSGoogle Scholar
  8. M.W. Auger, T. Treu, A.S. Bolton, R. Gavazzi, L.V.E. Koopmans, P.J. Marshall, L.A. Moustakas, S. Burles, ApJ 724, 511 (2010). DOI 10.1088/0004-637X/724/1/511ADSGoogle Scholar
  9. S.A. Balbus, ApJ 562, 909 (2001). DOI 10.1086/323875ADSGoogle Scholar
  10. F. La Barbera, G. Busarello, P. Merluzzi, I.G. de la Rosa, G. Coppola, C.P. Haines, ApJ 689, 913 (2008). DOI 10.1086/592769ADSGoogle Scholar
  11. J.J. Binney, R.L. Davies, G.D. Illingworth, ApJ 361, 78 (1990). DOI 10.1086/169169ADSGoogle Scholar
  12. J. Binney, O. Strimpel, MNRAS 185, 473 (1978)ADSGoogle Scholar
  13. Y. Birnboim, A. Dekel, MNRAS 345, 349 (2003). DOI 10.1046/j.1365-8711.2003.06955.xADSGoogle Scholar
  14. Y. Birnboim, A. Dekel, E. Neistein, MNRAS 380, 339 (2007). DOI 10.1111/j.1365-2966. 2007.12074.xADSGoogle Scholar
  15. W.J.G. de Blok, Adv. Astron. 2010(2010). DOI 10.1155/2010/789293Google Scholar
  16. G.R. Blumenthal, S.M. Faber, J.R. Primack, M.J. Rees, Nature 311, 517 (1984)ADSGoogle Scholar
  17. R.C.E. van den Bosch, G. van de Ven, E.K. Verolme, M. Cappellari, P.T. de Zeeuw, MNRAS 385, 647 (2008). DOI 10.1111/j.1365-2966.2008.12874.xADSGoogle Scholar
  18. F. Brighenti, W.G. Mathews, ApJ 539, 675 (2000). DOI 10.1086/309266ADSGoogle Scholar
  19. F. Brighenti, W.G. Mathews, P.J. Humphrey, D.A. Buote, ApJ 705, 1672 (2009). DOI 10.1088/0004-637X/705/2/1672ADSGoogle Scholar
  20. F. Brighenti, W.G. Mathews, ApJ 470, 747 (1996). DOI 10.1086/177905ADSGoogle Scholar
  21. F. Brighenti, W.G. Mathews, ApJ 486, L83 (1997)ADSGoogle Scholar
  22. F. Brighenti, W.G. Mathews, ApJ 527, L89 (1999). DOI 10.1086/312407ADSGoogle Scholar
  23. G. Bruzual, S. Charlot, MNRAS 344, 1000 (2003). DOI 10.1046/j.1365-8711.2003.06897.xADSGoogle Scholar
  24. G.L. Bryan, M.L. Norman, ApJ 495, 80 (1998). DOI 10.1086/305262ADSGoogle Scholar
  25. J.S. Bullock, T.S. Kolatt, Y. Sigad, R.S. Somerville, A.V. Kravtsov, A.A. Klypin, J.R. Primack, A. Dekel, MNRAS 321, 559 (2001). DOI 10.1046/j.1365-8711.2001.04068.xADSGoogle Scholar
  26. D.A. Buote, ApJ 539, 172 (2000). DOI 10.1086/309224ADSGoogle Scholar
  27. D.A. Buote, ApJ 574, L135 (2002). DOI 10.1086/342532ADSGoogle Scholar
  28. D.A. Buote, F. Brighenti, W.G. Mathews, ApJ 607, L91 (2004)ADSGoogle Scholar
  29. D.A. Buote, C.R. Canizares, ApJ 427, 86 (1994). DOI 10.1086/174123ADSGoogle Scholar
  30. D.A. Buote, C.R. Canizares, ApJ 457, 177 (1996). DOI 10.1086/176721ADSGoogle Scholar
  31. D.A. Buote, C.R. Canizares, ApJ 474, 650 (1997). DOI 10.1086/303490ADSGoogle Scholar
  32. D.A. Buote, C.R. Canizares, in Galactic Halos, Astronomical Society of the Pacific Conference Series, vol. 136, ed. by D. Zaritsky. Astronomical Society of the Pacific Conference Series, vol. 136, p. 289 (1998)Google Scholar
  33. D.A. Buote, C.R. Canizares, MNRAS 298, 811 (1998). DOI 10.1046/j.1365-8711.1998. 01663.xADSGoogle Scholar
  34. D.A. Buote, F. Gastaldello, P.J. Humphrey, L. Zappacosta, J.S. Bullock, F. Brighenti, W.G. Mathews, ApJ 664, 123 (2007). DOI 10.1086/518684ADSGoogle Scholar
  35. D.A. Buote, T.E. Jeltema, C.R. Canizares, G.P. Garmire, ApJ 577, 183 (2002). DOI 10.1086/342158ADSGoogle Scholar
  36. D.A. Buote, A.D. Lewis, F. Brighenti, W.G. Mathews, ApJ 594, 741 (2003a)ADSGoogle Scholar
  37. D.A. Buote, A.D. Lewis, F. Brighenti, W.G. Mathews, ApJ 595, 151 (2003b)ADSGoogle Scholar
  38. D.A. Buote, J.C. Tsai, ApJ 439, 29 (1995). DOI 10.1086/175148ADSGoogle Scholar
  39. N. Caon, D. Macchetto, M. Pastoriza, ApJS 127, 39 (2000). DOI 10.1086/313315ADSGoogle Scholar
  40. M. Cappellari, E.K. Verolme, R.P. van der Marel, G.A.V. Kleijn, G.D. Illingworth, M. Franx, C.M. Carollo, P.T. de Zeeuw, ApJ 578, 787 (2002). DOI 10.1086/342653ADSGoogle Scholar
  41. K.W. Cavagnolo, B.R. McNamara, P.E.J. Nulsen, C.L. Carilli, C. Jones, L. Birzan, ArXiv e-prints (2010)Google Scholar
  42. A. Cavaliere, R. Fusco-Femiano, A&A 49, 137 (1976)ADSGoogle Scholar
  43. A. Cavaliere, R. Fusco-Femiano, A&A 70, 677 (1978)ADSGoogle Scholar
  44. A. Cavaliere, A. Lapi, R. Fusco-Femiano, ApJ 698, 580 (2009). DOI 10.1088/0004-637X/ 698/1/580ADSGoogle Scholar
  45. E. Churazov, W. Forman, A. Vikhlinin, S. Tremaine, O. Gerhard, C. Jones, MNRAS 388, 1062 (2008). DOI 10.1111/j.1365-2966.2008.13507.xADSGoogle Scholar
  46. E. Churazov, S. Tremaine, W. Forman, O. Gerhard, P. Das, A. Vikhlinin, C. Jones, H. Böhringer, K. Gebhardt, MNRAS 404, 1165 (2010). DOI 10.1111/j.1365-2966. 2010.16377.xADSGoogle Scholar
  47. L. Ciotti, S. Pellegrini, MNRAS 350, 609 (2004). DOI 10.1111/j.1365-2966.2004.07670.xADSGoogle Scholar
  48. L.L. Cowie, C.F. McKee, ApJ 211, 135 (1977). DOI 10.1086/154911ADSGoogle Scholar
  49. R.A. Crain, I.G. McCarthy, C.S. Frenk, T. Theuns, J. Schaye, MNRAS 967 (2010). DOI 10.1111/j.1365-2966.2010.16985.xGoogle Scholar
  50. R.A. Crain, I.G. McCarthy, J. Schaye, C.S. Frenk, T. Theuns, ArXiv e-prints (2010)Google Scholar
  51. X. Dai, J.N. Bregman, C.S. Kochanek, E. Rasia, ApJ 719, 119 (2010). DOI 10.1088/ 0004-637X/719/1/119ADSGoogle Scholar
  52. A. Dariush, H.G. Khosroshahi, T.J. Ponman, F. Pearce, S. Raychaudhury, W. Hartley, MNRAS 382, 433 (2007). DOI 10.1111/j.1365-2966.2007.12385.xADSGoogle Scholar
  53. P. Das, O. Gerhard, E. Churazov, I. Zhuravleva, MNRAS 409, 1362 (2010). DOI 10.1111/j.1365-2966.2010.17417.xADSGoogle Scholar
  54. R. Davé, B.D. Oppenheimer, N. Katz, J.A. Kollmeier, D.H. Weinberg, MNRAS 1291–+ (2010). DOI 10.1111/j.1365-2966.2010.17279.xGoogle Scholar
  55. L.P. David, C. Jones, W. Forman, S. Daines, ApJ 428, 544 (1994). DOI 10.1086/174264ADSGoogle Scholar
  56. L.P. David, C. Jones, W. Forman, P. Nulsen, J. Vrtilek, E. O’Sullivan, S. Giacintucci, S. Raychaudhury, ApJ 705, 624 (2009). DOI 10.1088/0004-637X/705/1/624ADSGoogle Scholar
  57. L.P. David, P.E.J. Nulsen, B.R. McNamara, W. Forman, C. Jones, T. Ponman, B. Robertson, M. Wise, ApJ 557, 546 (2001). DOI 10.1086/322250ADSGoogle Scholar
  58. A. Dekel, Y. Birnboim, MNRAS 383, 119 (2008). DOI 10.1111/j.1365-2966.2007.12569.xADSGoogle Scholar
  59. A. Dekel, J. Silk, ApJ 303, 39 (1986). DOI 10.1086/164050ADSGoogle Scholar
  60. A. Del Popolo, ApJ 698, 2093 (2009). DOI 10.1088/0004-637X/698/2/2093ADSGoogle Scholar
  61. S. Diehl, T.S. Statler, ApJ 668, 150 (2007). DOI 10.1086/521009ADSGoogle Scholar
  62. E. D’Onghia, J. Sommer-Larsen, A.D. Romeo, A. Burkert, K. Pedersen, L. Portinari, J. Rasmussen, ApJ 630, L109 (2005). DOI 10.1086/491651ADSGoogle Scholar
  63. M.A. Dopita, R.S. Sutherland, Astrophysics of the Diffuse Universe(Springer, Berlin, 2003)Google Scholar
  64. J. Dubinski, ApJ 431, 617 (1994). DOI 10.1086/174512ADSGoogle Scholar
  65. A.R. Duffy, J. Schaye, S.T. Kay, C. Dalla Vecchia, R.A. Battye, C.M. Booth, MNRAS 405, 2161 (2010). DOI 10.1111/j.1365-2966.2010.16613.xADSGoogle Scholar
  66. J. Einasto, ArXiv e-prints (2009)Google Scholar
  67. R.S. Ellis, Phil. Trans. R. Soc. A 368, 967 (2010). DOI 10.1098/rsta.2009.0209ADSMATHGoogle Scholar
  68. J. Ellis, K.A. Olive, Supersymmetric dark matter candidates (Cambridge University Press, 2010), p. 142Google Scholar
  69. A.A. El-Zant, Y. Hoffman, J. Primack, F. Combes, I. Shlosman, ApJ 607, L75 (2004). DOI 10.1086/421938ADSGoogle Scholar
  70. A.E. Evrard, C.A. Metzler, J.F. Navarro, ApJ 469, 494 (1996). DOI 10.1086/177798ADSGoogle Scholar
  71. G. Fabbiano, ARA&A 27, 87 (1989). DOI 10.1146/annurev.aa.27.090189.000511ADSGoogle Scholar
  72. A.C. Fabian, in NATO ASIC Proc. 300: Physical Processes in Hot Cosmic Plasmas(1990), pp. 271–297, ed. by W. Brinkmann, A. C. Fabian, F. GiovannelliGoogle Scholar
  73. A.C. Fabian, E.M. Hu, L.L. Cowie, J. Grindlay, ApJ 248, 47 (1981). DOI 10.1086/159128ADSGoogle Scholar
  74. A.C. Fabian, P.A. Thomas, R.E. White, III, S.M. Fall, MNRAS 221, 1049 (1986)ADSGoogle Scholar
  75. D. Fabricant, M. Lecar, P. Gorenstein, ApJ 241, 552 (1980). DOI 10.1086/158369ADSGoogle Scholar
  76. T. Fang, P. Humphrey, D. Buote, ApJ 691, 1648 (2009). DOI 10.1088/0004-637X/691/ 2/1648ADSGoogle Scholar
  77. J.L. Feng, ArXiv High Energy Physics – Phenomenology e-prints (2005)Google Scholar
  78. J.L. Feng, M. Kaplinghat, H. Tu, H. Yu, JCAP 7, 4 (2009). DOI 10.1088/1475-7516/ 2009/07/004ADSGoogle Scholar
  79. J.L. Feng, M. Kaplinghat, H. Yu, Phys. Rev. Lett. 104(15), 151301 (2010). DOI 10.1103/ PhysRevLett.104.151301ADSGoogle Scholar
  80. L. Ferrarese, H.C. Ford, W. Jaffe, ApJ 470, 444 (1996). DOI 10.1086/177876ADSGoogle Scholar
  81. L. Ferrarese, H. Ford, Space Sci. Rev. 116, 523 (2005). DOI 10.1007/s11214-005-3947-6ADSGoogle Scholar
  82. L. Ferrarese, D. Merritt, ApJ 539, L9 (2000). DOI 10.1086/312838ADSGoogle Scholar
  83. M. Fioc, B. Rocca-Volmerange, A&A 326, 950 (1997)ADSGoogle Scholar
  84. C. Firmani, E. D’Onghia, G. Chincarini, X. Hernández, V. Avila-Reese, MNRAS 321, 713 (2001). DOI 10.1046/j.1365-8711.2001.04030.xADSGoogle Scholar
  85. R.A. Flores, J.R. Primack, ApJ 427, L1 (1994). DOI 10.1086/187350ADSGoogle Scholar
  86. W. Forman, C. Jones, E. Churazov, M. Markevitch, P. Nulsen, A. Vikhlinin, M. Begelman, H. Böhringer, J. Eilek, S. Heinz, R. Kraft, F. Owen, M. Pahre, ApJ 665, 1057 (2007). DOI 10.1086/519480ADSGoogle Scholar
  87. Y. Fukazawa, J.G. Botoya-Nonesa, J. Pu, A. Ohto, N. Kawano, ApJ 636, 698 (2006). DOI 10.1086/498081ADSGoogle Scholar
  88. M. Fukugita, P.J.E. Peebles, ApJ 639, 590 (2006). DOI 10.1086/499556ADSGoogle Scholar
  89. R. Fusco-Femiano, A. Cavaliere, A. Lapi, ApJ 705, 1019 (2009). DOI 10.1088/ 0004-637X/705/1/1019ADSGoogle Scholar
  90. F. Gastaldello, D.A. Buote, P.J. Humphrey, L. Zappacosta, J.S. Bullock, F. Brighenti, W.G. Mathews, ApJ 669, 158 (2007). DOI 10.1086/521519ADSGoogle Scholar
  91. F. Gastaldello, D.A. Buote, P. Temi, F. Brighenti, W.G. Mathews, S. Ettori, ApJ 693, 43 (2009). DOI 10.1088/0004-637X/693/1/43ADSGoogle Scholar
  92. K. Gebhardt, R. Bender, G. Bower, A. Dressler, S.M. Faber, A.V. Filippenko, R. Green, C. Grillmair, L.C. Ho, J. Kormendy, T.R. Lauer, J. Magorrian, J. Pinkney, D. Richstone, S. Tremaine, ApJ 539, L13 (2000). DOI 10.1086/312840ADSGoogle Scholar
  93. K. Gebhardt, D. Richstone, J. Kormendy, T.R. Lauer, E.A. Ajhar, R. Bender, A. Dressler, S.M. Faber, C. Grillmair, J. Magorrian, S. Tremaine, AJ 119, 1157 (2000). DOI 10.1086/301240ADSGoogle Scholar
  94. K. Gebhardt, D. Richstone, S. Tremaine, T.R. Lauer, R. Bender, G. Bower, A. Dressler, S.M. Faber, A.V. Filippenko, R. Green, C. Grillmair, L.C. Ho, J. Kormendy, J. Magorrian, J. Pinkney, ApJ 583, 92 (2003). DOI 10.1086/345081ADSGoogle Scholar
  95. K. Gebhardt, J. Thomas, ApJ 700, 1690 (2009). DOI 10.1088/0004-637X/700/2/1690ADSGoogle Scholar
  96. O. Gerhard, in Planetary Nebulae Beyond the Milky Way, ed. by L. Stanghellini, J. R. Walsh, N. G. Douglas (Springer, Berlin, 2006), p. 299. DOI 10.1007/ 3-540-34270-2-47Google Scholar
  97. O. Gerhard, ArXiv e-prints (2010)Google Scholar
  98. G. Gilmore, D. Zucker, M. Wilkinson, R.F.G. Wyse, V. Belokurov, J. Kleyna, A. Koch, N.W. Evans, E.K. Grebel, in Astronomical Society of the Pacific Conference Series, Astronomical Society of the Pacific Conference Series, vol. 399, ed. by T. Kodama, T. Yamada, K. Aoki. Astronomical Society of the Pacific Conference Series, vol. 399, p. 453 (2008)Google Scholar
  99. S. Giodini, D. Pierini, A. Finoguenov, G.W. Pratt, H. Boehringer, A. Leauthaud, L. Guzzo, H. Aussel, M. Bolzonella, P. Capak, M. Elvis, G. Hasinger, O. Ilbert, J.S. Kartaltepe, A.M. Koekemoer, S.J. Lilly, R. Massey, H.J. McCracken, J. Rhodes, M. Salvato, D.B. Sanders, N.Z. Scoville, S. Sasaki, V. Smolcic, Y. Taniguchi, D. Thompson, the COSMOS Collaboration, ApJ 703, 982 (2009). DOI 10.1088/ 0004-637X/703/1/982ADSGoogle Scholar
  100. O.Y. Gnedin, A.V. Kravtsov, A.A. Klypin, D. Nagai, ApJ 616, 16 (2004)ADSGoogle Scholar
  101. O.Y. Gnedin, D.H. Weinberg, J. Pizagno, F. Prada, H. Rix, ApJ 671, 1115 (2007). DOI 10.1086/523256ADSGoogle Scholar
  102. F. Govoni, L. Feretti, Int. J. Modern Phys. D 13, 1549 (2004). DOI 10.1142/ S0218271804005080ADSMATHGoogle Scholar
  103. K. Gültekin, D.O. Richstone, K. Gebhardt, T.R. Lauer, S. Tremaine, M.C. Aller, R. Bender, A. Dressler, S.M. Faber, A.V. Filippenko, R. Green, L.C. Ho, J. Kormendy, J. Magorrian, J. Pinkney, C. Siopis, ApJ 698, 198 (2009). DOI 10. 1088/0004-637X/698/1/198ADSGoogle Scholar
  104. P.C. Hanlan, J.N. Bregman, ApJ 530, 213 (2000). DOI 10.1086/308357ADSGoogle Scholar
  105. S. Hannestad, Int. J. Modern Phys. A 21, 1938 (2006). DOI 10.1142/S0217751X06032885ADSGoogle Scholar
  106. C. Heymans, E.F. Bell, H. Rix, M. Barden, A. Borch, J.A.R. Caldwell, D.H. McIntosh, K. Meisenheimer, C.Y. Peng, C. Wolf, S.V.W. Beckwith, B. Häußler, K. Jahnke, S. Jogee, S.F. Sánchez, R. Somerville, L. Wisotzki, MNRAS 371, L60 (2006). DOI 10.1111/j.1745-3933.2006.00208.xADSGoogle Scholar
  107. H. Hoekstra, B.C. Hsieh, H.K.C. Yee, H. Lin, M.D. Gladders, ApJ 635, 73 (2005). DOI 10.1086/496913ADSGoogle Scholar
  108. P.F. Hopkins, L. Hernquist, T.J. Cox, T. Di Matteo, B. Robertson, V. Springel, ApJS 163, 1 (2006). DOI 10.1086/499298ADSGoogle Scholar
  109. P.J. Humphrey, D.A. Buote, ApJ 639, 136 (2006). DOI 10.1086/499323ADSGoogle Scholar
  110. P.J. Humphrey, D.A. Buote, ApJ 689, 983 (2008). DOI 10.1086/592590ADSGoogle Scholar
  111. P.J. Humphrey, D.A. Buote, MNRAS 403, 2143 (2010). DOI 10.1111/j.1365-2966.2010. 16257.xADSGoogle Scholar
  112. P.J. Humphrey, D.A. Buote, F. Brighenti, K. Gebhardt, W.G. Mathews, ApJ 683, 161 (2008). DOI 10.1086/589709ADSGoogle Scholar
  113. P.J. Humphrey, D.A. Buote, F. Brighenti, K. Gebhardt, W.G. Mathews, ApJ 703, 1257 (2009). DOI 10.1088/0004-637X/703/2/1257ADSGoogle Scholar
  114. P.J. Humphrey, D.A. Buote, C.R. Canizares, A.C. Fabian, J.M. Miller, ApJ 729, 53 (2011). DOI 10.1088/0004-637X/729/1/53ADSGoogle Scholar
  115. P.J. Humphrey, D.A. Buote, F. Gastaldello, L. Zappacosta, J.S. Bullock, F. Brighenti, W.G. Mathews, ApJ 646, 899 (2006). DOI 10.1086/505019ADSGoogle Scholar
  116. I.G. Irastorza, ArXiv e-prints (2009)Google Scholar
  117. J.A. Irwin, C.L. Sarazin, ApJ 471, 683 (1996)ADSGoogle Scholar
  118. C. Jones, W. Forman, A. Vikhlinin, M. Markevitch, L. David, A. Warmflash, S. Murray, P.E.J. Nulsen, ApJ 567, L115 (2002). DOI 10.1086/340114ADSGoogle Scholar
  119. L.R. Jones, T.J. Ponman, A. Horton, A. Babul, H. Ebeling, D.J. Burke, MNRAS 343, 627 (2003). DOI 10.1046/j.1365-8711.2003.06702.xADSGoogle Scholar
  120. C. Jones, C. Stern, W. Forman, J. Breen, L. David, W. Tucker, M. Franx, ApJ 482, 143 (1997). DOI 10.1086/304104ADSGoogle Scholar
  121. T. Kaufmann, J.S. Bullock, A.H. Maller, T. Fang, J. Wadsley, MNRAS 396, 191 (2009). DOI 10.1111/j.1365-2966.2009.14744.xADSGoogle Scholar
  122. D.D. Kelson, A.I. Zabludoff, K.A. Williams, S.C. Trager, J.S. Mulchaey, M. Bolte, ApJ 576, 720 (2002). DOI 10.1086/341891ADSGoogle Scholar
  123. D. Kereš, N. Katz, D.H. Weinberg, R. Davé, MNRAS 363, 2 (2005). DOI 10.1111/j. 1365-2966.2005.09451.xADSGoogle Scholar
  124. H.G. Khosroshahi, L.R. Jones, T.J. Ponman, MNRAS 349, 1240 (2004). DOI 10.1111/j. 1365-2966.2004.07575.xADSGoogle Scholar
  125. D. Kim, G. Fabbiano, ApJ 613, 933 (2004). DOI 10.1086/423266ADSGoogle Scholar
  126. M. Kleinheinrich, P. Schneider, H. Rix, T. Erben, C. Wolf, M. Schirmer, K. Meisenheimer, A. Borch, S. Dye, Z. Kovacs, L. Wisotzki, A&A 455, 441 (2006). DOI 10.1051/0004-6361:20042606ADSGoogle Scholar
  127. C.S. Kochanek, M. White, ApJ 543, 514 (2000). DOI 10.1086/317149ADSGoogle Scholar
  128. M. Komiyama, K. Sato, R. Nagino, T. Ohashi, K. Matsushita, PASJ 61, 337 (2009)Google Scholar
  129. L.V.E. Koopmans, T. Treu, A.S. Bolton, S. Burles, L.A. Moustakas, ApJ 649, 599 (2006). DOI 10.1086/505696ADSGoogle Scholar
  130. G.A. Kriss, D.F. Cioffi, C.R. Canizares, ApJ 272, 439 (1983). DOI 10.1086/161311ADSGoogle Scholar
  131. P. Kroupa, MNRAS 322, 231 (2001). DOI 10.1046/j.1365-8711.2001.04022.xADSGoogle Scholar
  132. R. Kuzio de Naray, G.D. Martinez, J.S. Bullock, M. Kaplinghat, ApJ 710, L161 (2010). DOI 10.1088/2041-8205/710/2/L161ADSGoogle Scholar
  133. O. Lahav, A.R. Liddle, ArXiv e-prints (2010)Google Scholar
  134. E.T. Lau, D. Nagai, A.V. Kravtsov, A.R. Zentner, ApJ 734, 93 (2011). DOI 10.1088/0004-637X/734/2/93ADSGoogle Scholar
  135. T.R. Lauer, S.M. Faber, D. Richstone, K. Gebhardt, S. Tremaine, M. Postman, A. Dressler, M.C. Aller, A.V. Filippenko, R. Green, L.C. Ho, J. Kormendy, J. Magorrian, J. Pinkney, ApJ 662, 808 (2007). DOI 10.1086/518223ADSGoogle Scholar
  136. A.D. Lewis, D.A. Buote, J.T. Stocke, ApJ 586, 135 (2003)ADSGoogle Scholar
  137. A.V. Macciò, A.A. Dutton, F.C. van den Bosch, MNRAS 391, 1940 (2008). DOI 10.1111/j.1365-2966.2008.14029.xADSGoogle Scholar
  138. J. Magorrian, MNRAS 302, 530 (1999). DOI 10.1046/j.1365-8711.1999.02135.xADSGoogle Scholar
  139. A.H. Maller, J.S. Bullock, MNRAS 355, 694 (2004). DOI 10.1111/j.1365-2966.2004.08349.xADSGoogle Scholar
  140. G.A. Mamon, E.L. Łokas, MNRAS 362, 95 (2005). DOI 10.1111/j.1365-2966.2005.09225.xADSGoogle Scholar
  141. R. Mandelbaum, U. Seljak, G. Kauffmann, C.M. Hirata, J. Brinkmann, MNRAS 368, 715 (2006). DOI 10.1111/j.1365-2966.2006.10156.xADSGoogle Scholar
  142. C. Maraston, MNRAS 362, 799 (2005). DOI 10.1111/j.1365-2966.2005.09270.xADSGoogle Scholar
  143. R.P. van der Marel, N. Cretton, P.T. de Zeeuw, H. Rix, ApJ 493, 613 (1998). DOI 10.1086/305147ADSGoogle Scholar
  144. R.P. van der Marel, M. Franx, ApJ 407, 525 (1993). DOI 10.1086/172534ADSGoogle Scholar
  145. W.G. Mathews, ApJ 219, 413 (1978). DOI 10.1086/155794ADSGoogle Scholar
  146. W.G. Mathews, F. Brighenti, ARA&A 41, 191 (2003a)ADSGoogle Scholar
  147. W.G. Mathews, F. Brighenti, ApJ 599, 992 (2003b). DOI 10.1086/379537ADSGoogle Scholar
  148. W.G. Mathews, F. Brighenti, ApJ 488, 595 (1997). DOI 10.1086/304728ADSGoogle Scholar
  149. K. Matsushita, Y. Fukazawa, J.P. Hughes, T. Kitaguchi, K. Makishima, K. Nakazawa, T. Ohashi, N. Ota, T. Tamura, M. Tozuka, T.G. Tsuru, Y. Urata, N.Y. Yamasaki, PASJ 59, 327 (2007)Google Scholar
  150. T. Di Matteo, V. Springel, L. Hernquist, Nature 433, 604 (2005). DOI 10.1038/ nature03335ADSGoogle Scholar
  151. D. Merritt, B. Tremblay, AJ 108, 514 (1994). DOI 10.1086/117088ADSGoogle Scholar
  152. R. Mewe, in X-Ray Spectroscopy in Astrophysics, Lecture Notes in Physics, Berlin Springer Verlag, vol. 520, ed. by J. van Paradijs, J.A.M. Bleeker. Lecture Notes in Physics, vol. 520 (Springer Verlag, Berlin, 1999) p. 109Google Scholar
  153. E.T. Million, N. Werner, A. Simionescu, S.W. Allen, P.E.J. Nulsen, A.C. Fabian, H. Böhringer, J.S. Sanders, MNRAS 407, 2046 (2010). DOI 10.1111/j.1365-2966.2010.17220.xADSGoogle Scholar
  154. M. Milosavljević, C.J. Miller, S.R. Furlanetto, A. Cooray, ApJ 637, L9 (2006). DOI 10.1086/500547ADSGoogle Scholar
  155. B. Moore, Nature 370, 629 (1994). DOI 10.1038/370629a0ADSGoogle Scholar
  156. D. Nagai, A. Vikhlinin, A.V. Kravtsov, ApJ 655, 98 (2007). DOI 10.1086/509868ADSGoogle Scholar
  157. R. Nagino, K. Matsushita, A&A 501, 157 (2009). DOI 10.1051/0004-6361/200810978ADSGoogle Scholar
  158. A.B. Newman, T. Treu, R.S. Ellis, D.J. Sand, J. Richard, P.J. Marshall, P. Capak, S. Miyazaki, ApJ 706, 1078 (2009). DOI 10.1088/0004-637X/706/2/1078ADSGoogle Scholar
  159. P.E.J. Nulsen, H. Bohringer, MNRAS 274, 1093 (1995)ADSGoogle Scholar
  160. P.E.J. Nulsen, S.L. Powell, A. Vikhlinin, ApJ 722, 55 (2010). DOI 10.1088/0004-637X/722/1/55ADSGoogle Scholar
  161. P.E.J. Nulsen, G.C. Stewart, A.C. Fabian, MNRAS 208, 185 (1984)ADSGoogle Scholar
  162. B.D. Oppenheimer, R. Davé, MNRAS 373, 1265 (2006). DOI 10.1111/j.1365-2966.2006. 10989.xADSGoogle Scholar
  163. E. O’Sullivan, T.J. Ponman, MNRAS 354, 935 (2004). DOI 10.1111/j.1365-2966.2004. 08257.xADSGoogle Scholar
  164. E. O’Sullivan, A.J.R. Sanderson, T.J. Ponman, MNRAS 380, 1409 (2007). DOI 10.1111/ j.1365-2966.2007.12229.xADSGoogle Scholar
  165. E. O’Sullivan, J.M. Vrtilek, D.E. Harris, T.J. Ponman, ApJ 658, 299 (2007). DOI 10.1086/511778ADSGoogle Scholar
  166. L.C. Parker, H. Hoekstra, M.J. Hudson, L. van Waerbeke, Y. Mellier, ApJ 669, 21 (2007). DOI 10.1086/521541ADSGoogle Scholar
  167. I.J. Parrish, E. Quataert, P. Sharma, ApJ 712, L194 (2010). DOI 10.1088/2041-8205/ 712/2/L194ADSGoogle Scholar
  168. S. Pellegrini, L. Ciotti, MNRAS 370, 1797 (2006). DOI 10.1111/j.1365-2966.2006.10590.xADSGoogle Scholar
  169. R. Piffaretti, R. Valdarnini, A&A 491, 71 (2008). DOI 10.1051/0004-6361:200809739ADSGoogle Scholar
  170. T.J. Ponman, D.J. Allan, L.R. Jones, M. Merrifield, I.M. McHardy, H.J. Lehto, G.A. Luppino, Nature 369, 462 (1994). DOI 10.1038/369462a0ADSGoogle Scholar
  171. F. Prada, M. Vitvitska, A. Klypin, J.A. Holtzman, D.J. Schlegel, E.K. Grebel, H. Rix, J. Brinkmann, T.A. McKay, I. Csabai, ApJ 598, 260 (2003). DOI 10.1086/378669ADSGoogle Scholar
  172. G.W. Pratt, M. Arnaud, R. Piffaretti, H. Böhringer, T.J. Ponman, J.H. Croston, G.M. Voit, S. Borgani, R.G. Bower, A&A 511, A85 (2010). DOI 10.1051/0004-6361/ 200913309ADSGoogle Scholar
  173. J.R. Primack, New J. Phys. 11(10), 105029 (2009). DOI 10.1088/1367-2630/11/10/105029Google Scholar
  174. E. Quataert, ApJ 673, 758 (2008). DOI 10.1086/525248ADSGoogle Scholar
  175. S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez, M. Bradač, ApJ 679, 1173 (2008). DOI 10.1086/587859ADSGoogle Scholar
  176. J. Rasmussen, T.J. Ponman, MNRAS 380, 1554 (2007). DOI 10.1111/j.1365-2966.2007. 12191.xADSGoogle Scholar
  177. J. Rasmussen, J. Sommer-Larsen, K. Pedersen, S. Toft, A. Benson, R.G. Bower, L.F. Grove, ApJ 697, 79 (2009). DOI 10.1088/0004-637X/697/1/79ADSGoogle Scholar
  178. M. Revnivtsev, E. Churazov, S. Sazonov, W. Forman, C. Jones, A&A 490, 37 (2008). DOI 10.1051/0004-6361:200809889ADSGoogle Scholar
  179. D.O. Richstone, S. Tremaine, ApJ 327, 82 (1988). DOI 10.1086/166171ADSGoogle Scholar
  180. E. Romano-Díaz, I. Shlosman, Y. Hoffman, C. Heller, ApJ 685, L105 (2008). DOI 10.1086/592687ADSGoogle Scholar
  181. A.J. Romanowsky, J. Strader, L.R. Spitler, R. Johnson, J.P. Brodie, D.A. Forbes, T. Ponman, AJ 137, 4956 (2009). DOI 10.1088/0004-6256/137/6/4956ADSGoogle Scholar
  182. S.P. Rusli, J. Thomas, P. Erwin, R.P. Saglia, N. Nowak, R. Bender, ArXiv e-prints (2010)Google Scholar
  183. M. Ruszkowski, S.P. Oh, ApJ 713, 1332 (2010). DOI 10.1088/0004-637X/713/2/1332ADSGoogle Scholar
  184. D.J. Sand, T. Treu, R.S. Ellis, ApJ 574, L129 (2002). DOI 10.1086/342530ADSGoogle Scholar
  185. D.J. Sand, T. Treu, R.S. Ellis, G.P. Smith, J. Kneib, ApJ 674, 711 (2008). DOI 10.1086/524652ADSGoogle Scholar
  186. D.J. Sand, T. Treu, G.P. Smith, R.S. Ellis, ApJ 604, 88 (2004). DOI 10.1086/382146ADSGoogle Scholar
  187. J.S. Sanders, A.C. Fabian, R.K. Smith, MNRAS 410, 1797 (2011). DOI 10.1111/j.1365-2966.2010.17561.xADSGoogle Scholar
  188. C.L. Sarazin, Rev. Modern Phys. 58, 1 (1986). DOI 10.1103/RevModPhys.58.1ADSGoogle Scholar
  189. C.L. Sarazin, in NATO ASIC Proc. 366: Clusters and Superclusters of Galaxies(1992), p. 131, ed. by A. C. FabianGoogle Scholar
  190. C.L. Sarazin, J.N. Bahcall, ApJS 34, 451 (1977). DOI 10.1086/190457ADSGoogle Scholar
  191. S. Sato, F. Akimoto, A. Furuzawa, Y. Tawara, M. Watanabe, Y. Kumai, ApJ 537, L73 (2000). DOI 10.1086/312772ADSGoogle Scholar
  192. M. Schwarzschild, ApJ 232, 236 (1979). DOI 10.1086/157282ADSGoogle Scholar
  193. K.L. Shapiro, M. Cappellari, T. de Zeeuw, R.M. McDermid, K. Gebhardt, R.C.E. van den Bosch, T.S. Statler, MNRAS 370, 559 (2006). DOI 10.1111/j.1365-2966.2006.10537.xADSGoogle Scholar
  194. J. Shen, K. Gebhardt, ApJ 711, 484 (2010). DOI 10.1088/0004-637X/711/1/484ADSGoogle Scholar
  195. C. Siopis, K. Gebhardt, T.R. Lauer, J. Kormendy, J. Pinkney, D. Richstone, S.M. Faber, S. Tremaine, M.C. Aller, R. Bender, G. Bower, A. Dressler, A.V. Filippenko, R. Green, L.C. Ho, J. Magorrian, ApJ 693, 946 (2009). DOI 10.1088/0004-637X/693/ 1/946**********ADSGoogle Scholar
  196. D.N. Spergel, P.J. Steinhardt, Phys. Rev. Lett. 84, 3760 (2000). DOI 10.1103/ PhysRevLett.84.3760ADSGoogle Scholar
  197. L. Spitzer, Jr., ApJ 124, 20 (1956). DOI 10.1086/146200ADSGoogle Scholar
  198. L. Spitzer, Physics of Fully Ionized Gases(Interscience, New York, 1962)Google Scholar
  199. T.S. Statler, B.R. McNamara, ApJ 581, 1032 (2002). DOI 10.1086/344362ADSGoogle Scholar
  200. F.D. Steffen, Eur. Phys. J. C 59, 557 (2009). DOI 10.1140/epjc/s10052-008-0830-0ADSGoogle Scholar
  201. M. Sun, W. Forman, A. Vikhlinin, A. Hornstrup, C. Jones, S.S. Murray, ApJ 598, 250 (2003). DOI 10.1086/378887ADSGoogle Scholar
  202. M. Sun, G.M. Voit, M. Donahue, C. Jones, W. Forman, A. Vikhlinin, ApJ 693, 1142 (2009). DOI 10.1088/0004-637X/693/2/1142ADSGoogle Scholar
  203. J. Thomas, R.P. Saglia, R. Bender, D. Thomas, K. Gebhardt, J. Magorrian, E.M. Corsini, G. Wegner, MNRAS 382, 657 (2007). DOI 10.1111/j.1365-2966.2007.12434.xADSGoogle Scholar
  204. P. Tozzi, C. Norman, ApJ 546, 63 (2001). DOI 10.1086/318237ADSGoogle Scholar
  205. T. Treu, ARA&A 48, 87 (2010). DOI 10.1146/annurev-astro-081309-130924ADSGoogle Scholar
  206. G. Trinchieri, S. Pellegrini, G. Fabbiano, R. Fu, N.J. Brassington, A. Zezas, D. Kim, J. Gallagher, L. Angelini, R.L. Davies, V. Kalogera, A.R. King, S. Zepf, ApJ 688, 1000 (2008). DOI 10.1086/592287ADSGoogle Scholar
  207. J.C. Tsai, N. Katz, E. Bertschinger, ApJ 423, 553 (1994). DOI 10.1086/173834ADSGoogle Scholar
  208. J.P. Vallée, New Astron. Rev. 48, 763 (2004). DOI 10.1016/j.newar.2004.03.017ADSGoogle Scholar
  209. M. Valluri, V.P. Debattista, T. Quinn, B. Moore, MNRAS 403, 525 (2010). DOI 10.1111/ j.1365-2966.2009.16192.xADSGoogle Scholar
  210. M. Valluri, D. Merritt, E. Emsellem, ApJ 602, 66 (2004). DOI 10.1086/380896ADSGoogle Scholar
  211. A. Vikhlinin, A. Kravtsov, W. Forman, C. Jones, M. Markevitch, S.S. Murray, L. Van Speybroeck, ApJ 640, 691 (2006). DOI 10.1086/500288ADSGoogle Scholar
  212. A. Vikhlinin, B.R. McNamara, A. Hornstrup, H. Quintana, W. Forman, C. Jones, M. Way, ApJ 520, L1 (1999). DOI 10.1086/312134ADSGoogle Scholar
  213. L.M. Voigt, A.C. Fabian, MNRAS 368, 518 (2006). DOI 10.1111/j.1365-2966.2006.10199.xADSGoogle Scholar
  214. G.M. Voit, S.T. Kay, G.L. Bryan, MNRAS 364, 909 (2005). DOI 10.1111/j.1365-2966. 2005.09621.xADSGoogle Scholar
  215. N. Werner, I. Zhuravleva, E. Churazov, A. Simionescu, S.W. Allen, W. Forman, C. Jones, J.S. Kaastra, MNRAS 398, 23 (2009). DOI 10.1111/j.1365-2966.2009.14860. xADSGoogle Scholar
  216. D.A. White, C. Jones, W. Forman, MNRAS 292, 419 (1997)ADSGoogle Scholar
  217. X. Wu, Y. Xue, ApJ 529, L5 (2000). DOI 10.1086/312451ADSGoogle Scholar
  218. J.S.B. Wyithe, MNRAS 365, 1082 (2006). DOI 10.1111/j.1365-2966.2005.09721.xADSGoogle Scholar
  219. Z. Zhang, H. Xu, Y. Wang, T. An, Y. Xu, X. Wu, ApJ 656, 805 (2007). DOI 10.1086/ 510281ADSGoogle Scholar

Copyright information

© Springer New York 2012

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of California at IrvineIrvineUSA

Personalised recommendations