Advertisement

Feedback and Environmental Effects in Elliptical Galaxies

  • Craig L. SarazinEmail author
Chapter
  • 523 Downloads
Part of the Astrophysics and Space Science Library book series (ASSL, volume 378)

Abstract

The role of the environment of an elliptical galaxy on its hot interstellar gas is discussed. In general, the X-ray halos of early-type galaxies tend to be smaller and fainter in denser environments, with the exception of group-central galaxies. X-ray observations show many examples of nearby galaxies which are undergoing gas stripping. On the other hand, most bright galaxies in clusters do manage to retain small coronae of X-ray emission. Recent theoretical and observational results on the role of feedback from AGN at the centers of elliptical galaxies on their interstellar gas are reviewed. X-ray observations show many examples of X-ray holes in the central regions of brightest-cluster galaxies; in many cases, the X-ray holes are filled with radio lobes. Similar radio bubbles are seen in groups and individual early-type galaxies. “Ghost bubbles” are often seen at larger radii in clusters and galaxies; these bubbles are faint in high radio frequencies, and are believed to be old radio bubbles which have risen buoyantly in the hot gas. Low frequency radio observations show that many of the ghost bubbles have radio emission; in general, these long wavelength observations show that radio sources are much larger and involve greater energies than had been previously thought. The radio bubbles can be used to estimate the total energy output of the radio jets. The total energies deposited by radio jets exceed the losses from the gas due to radiative cooling, indicating that radio sources are energetically capable of heating the cooling core gas and preventing rapid cooling.

Keywords

Radio Source Cold Front Elliptical Galaxy Cool Core Radio Lobe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I thank Liz Blanton, Tracy Clarke, Judith Croston, and Ming Sun for comments and help with the figures for the original talk which led to this chapter. I want to thank Dong-Woo Kim and Silvia Pellegrini for organizing the very useful Joint Discussion at the IAU General Assembly in Rio, and for editing this volume. This work was supported by NASA Chandra grants GO7-8078X, GO7-8081A, GO8-9083X, GO8-9085X, GO9-0135X, and GO9-0148X, and NASA Herschel grant RSA1373266, and NASA HST grants HST-GO-10597.03-A and HST-GO-11679.01.

References

  1. D.M. Acreman, I.R. Stevens, T.J. Ponman, I. Sakelliou, MNRAS 341, 1333 (2003). doi: 10.1046/j.1365-8711.2003.06504.xADSCrossRefGoogle Scholar
  2. S.W. Allen, R.J.H. Dunn, A.C. Fabian, G.B. Taylor, C.S. Reynolds, MNRAS 372, 21 (2006). doi: 10.1111/j.1365-2966.2006.10778.xADSCrossRefGoogle Scholar
  3. A. Baldi, W. Forman, C. Jones, R. Kraft, P. Nulsen, E. Churazov, L. David, S. Giacintucci, ApJ 707, 1034 (2009). doi: 10.1088/0004-637X/707/2/1034ADSCrossRefGoogle Scholar
  4. B.A. Biller, C. Jones, W.R. Forman, R. Kraft, T. Ensslin, ApJ 613, 238 (2004). doi: 10.1086/423020ADSCrossRefGoogle Scholar
  5. L. Bîrzan, D.A. Rafferty, B.R. McNamara, M.W. Wise, P.E.J. Nulsen, ApJ 607, 800 (2004). doi: 10.1086/383519ADSCrossRefGoogle Scholar
  6. L. Bîrzan, B.R. McNamara, P.E.J. Nulsen, C.L. Carilli, M.W. Wise, ApJ 686, 859 (2008). doi: 10.1086/591416ADSCrossRefGoogle Scholar
  7. E.L. Blanton, C.L. Sarazin, B.R. McNamara, M.W. Wise, ApJ 558, L15 (2001). doi: 10.1086/323269ADSCrossRefGoogle Scholar
  8. E.L. Blanton, C.L. Sarazin, B.R. McNamara, ApJ 585, 227 (2003). doi: 10.1086/345984ADSCrossRefGoogle Scholar
  9. E.L. Blanton, C.L. Sarazin, B.R. McNamara, T.E. Clarke, ApJ 612, 817 (2004). doi: 10.1086/422677ADSCrossRefGoogle Scholar
  10. E.L. Blanton, S.W. Randall, E.M. Douglass, C.L. Sarazin, T.E. Clarke, B.R. McNamara, ApJ 697, L95 (2009). doi: 10.1088/0004-637X/697/2/L95ADSCrossRefGoogle Scholar
  11. H. Bondi, MNRAS 112, 195 (1952)MathSciNetADSGoogle Scholar
  12. H. Böhringer, W. Voges, A.C. Fabian, A.C. Edge, D.M. Neumann, MNRAS 264, L25 (1993)ADSGoogle Scholar
  13. B.A. Brown, J.N. Bregman, ApJ 539, 592 (2000). doi: 10.1086/309240ADSCrossRefGoogle Scholar
  14. M. Brüggen, G. De Lucia, MNRAS 383, 1336 (2008). doi: 10.1111/j.1365-2966.2007. 12670.xADSCrossRefGoogle Scholar
  15. E. Churazov, R. Sunyaev, W. Forman, H. Böhringer, MNRAS 332, 729 (2002). doi: 10.1046/j.1365-8711.2002.05332.xADSCrossRefGoogle Scholar
  16. T.E. Clarke, C.L. Sarazin, E.L. Blanton, D.M. Neumann, N.E. Kassim, ApJ 625, 748 (2005). doi: 10.1086/429717ADSCrossRefGoogle Scholar
  17. T.E. Clarke, E.L. Blanton, C.L. Sarazin, L.D. Anderson, Gopal-Krishna, E.M. Douglass, N.E. Kassim, ApJ 697, 1481 (2009). doi: 10.1088/0004-637X/697/2/1481Google Scholar
  18. L.L. Cowie, A. Songaila, Nature 266, 501 (1977). doi: 10.1038/266501a0ADSCrossRefGoogle Scholar
  19. D.J. Croton, V. Springel, S.D.M. White, G. De Lucia, C.S. Frenk, L. Gao, A. Jenkins, G. Kauffmann, J.F. Navarro, N. Yoshida, MNRAS 365, 11 (2006). doi: 10.1111/j. 1365-2966.2005.09675.xADSCrossRefGoogle Scholar
  20. J.H. Croston, R.P. Kraft, M.J. Hardcastle, M. Birkinshaw, D.M. Worrall, P.E.J. Nulsen, R.F. Penna, G.R. Sivakoff, A. Jordán, N.J. Brassington, D.A. Evans, W.R. Forman, M. Gilfanov, J.L. Goodger, W.E. Harris, C. Jones, A.M. Juett, S.S. Murray, S. Raychaudhury, C.L. Sarazin, R. Voss, K.A. Woodley, MNRAS 395, 1999 (2009). doi: 10.1111/j.1365-2966.2009.14715.xADSCrossRefGoogle Scholar
  21. L.P. David, C. Jones, W. Forman, P. Nulsen, J. Vrtilek, E. O’Sullivan, S. Giacintucci, S. Raychaudhury, ApJ 705, 624 (2009). doi: 10.1088/0004-637X/705/1/624ADSCrossRefGoogle Scholar
  22. S. Diehl, T.S. Statler, ApJ 680, 897 (2008). doi: 10.1086/587481ADSCrossRefGoogle Scholar
  23. S. Diehl, T.S. Statler, ApJ 687, 986 (2008). doi: 10.1086/592179ADSCrossRefGoogle Scholar
  24. W. Domainko, M. Mair, W. Kapferer, E. van Kampen, T. Kronberger, S. Schindler, S. Kimeswenger, M. Ruffert, O.E. Mangete, A&Ap 452, 795 (2006). doi: 10.1051/ 0004-6361:20053921ADSCrossRefGoogle Scholar
  25. R. Dong, J. Rasmussen, J.S. Mulchaey, ApJ 712, 883 (2010). doi: 10.1088/0004-637X/ 712/2/883ADSCrossRefGoogle Scholar
  26. R.J.H. Dunn, A.C. Fabian, MNRAS 373, 959 (2006). doi: 10.1111/j.1365-2966.2006.11080. xADSCrossRefGoogle Scholar
  27. R.J.H. Dunn, A.C. Fabian, MNRAS 385, 757 (2008). doi: 10.1111/j.1365-2966.2008.12898. xADSCrossRefGoogle Scholar
  28. R.J.H. Dunn, S.W. Allen, G.B. Taylor, K.F. Shurkin, G. Gentile, A.C. Fabian, C.S. Reynolds, MNRAS 404, 180 (2010). doi: 10.1111/j.1365-2966.2010.16314.xADSGoogle Scholar
  29. S.C. Ellis, E. O’Sullivan, MNRAS 367, 627 (2006). doi: 10.1111/j.1365-2966.2005.09982.xADSCrossRefGoogle Scholar
  30. A.C. Fabian, J.S. Sanders, G.B. Taylor, S.W. Allen, C.S. Crawford, R.M. Johnstone, K. Iwasawa, MNRAS 366, 417 (2006). doi: 10.1111/j.1365-2966.2005.09896.xADSCrossRefGoogle Scholar
  31. A. Finoguenov, U.G. Briel, J.P. Henry, G. Gavazzi, J. Iglesias-Paramo, A. Boselli, A&Ap 419, 47 (2004). doi: 10.1051/0004-6361:20035765ADSCrossRefGoogle Scholar
  32. A. Finoguenov, M. Ruszkowski, C. Jones, M. Brüggen, A. Vikhlinin, E. Mandel, ApJ 686, 911 (2008). doi: 10.1086/591662ADSCrossRefGoogle Scholar
  33. W. Forman, J. Schwarz, C. Jones, W. Liller, A.C. Fabian, ApJ 234, L27 (1979). doi: 10.1086/183103ADSCrossRefGoogle Scholar
  34. Y. Fujita, C.L. Sarazin, J.C. Kempner, L. Rudnick, O.B. Slee, A.L. Roy, H. Andernach, M. Ehle, ApJ 575, 764 (2002). doi: 10.1086/341352ADSCrossRefGoogle Scholar
  35. M. Gitti, E. O’Sullivan, S. Giacintucci, L.P. David, J. Vrtilek, S. Raychaudhury, P.E.J. Nulsen, ApJ 714, 758 (2010). doi: 10.1088/0004-637X/714/1/758ADSCrossRefGoogle Scholar
  36. J.E. Gunn, J.R. Gott, III, ApJ 176, 1 (1972). doi: 10.1086/151605ADSCrossRefGoogle Scholar
  37. S.F. Helsdon, T.J. Ponman, E. O’Sullivan, D.A. Forbes, MNRAS 325, 693 (2001). doi: 10.1046/j.1365-8711.2001.04490.xADSCrossRefGoogle Scholar
  38. M. Henriksen, S. Cousineau, ApJ 511, 595 (1999). doi: 10.1086/306690ADSCrossRefGoogle Scholar
  39. A.E. Hornschemeier, B. Mobasher, D.M. Alexander, F.E. Bauer, M.W. Bautz, D. Hammer, B.M. Poggianti, ApJ 643, 144 (2006). doi: 10.1086/500798ADSCrossRefGoogle Scholar
  40. Z. Huang, C.L. Sarazin, ApJ 496, 728 (1998). doi: 10.1086/305406ADSCrossRefGoogle Scholar
  41. D.S. Hudson, R. Mittal, T.H. Reiprich, P.E.J. Nulsen, H. Andernach, C.L. Sarazin, A&Ap 513, A37+ (2010). doi: 10.1051/0004-6361/200912377Google Scholar
  42. J.A. Irwin, C.L. Sarazin, ApJ 471, 683 (1996). doi: 10.1086/177998ADSCrossRefGoogle Scholar
  43. T.E. Jeltema, B. Binder, J.S. Mulchaey, ApJ 679, 1162 (2008). doi: 10.1086/587508ADSCrossRefGoogle Scholar
  44. C. Jones, W. Forman, A. Vikhlinin, M. Markevitch, L. David, A. Warmflash, S. Murray, P.E.J. Nulsen, ApJ 567, L115 (2002). doi: 10.1086/340114ADSCrossRefGoogle Scholar
  45. C. Jones, W. Forman, E. Churazov, P. Nulsen, R. Kraft, S. Murray, in Heating versus Cooling in Galaxies and Clusters of Galaxies, ed. by H. Böhringer, G. W. Pratt, A. Finoguenov, P. Schuecker (2007), pp. 145–+Google Scholar
  46. D. Kim, E. Kim, G. Fabbiano, G. Trinchieri, ApJ 688, 931 (2008). doi: 10.1086/592211ADSCrossRefGoogle Scholar
  47. J.E. Koglin, H. An, K.L. Blaedel, N.F. Brejnholt, F.E. Christensen, W.W. Craig, T.A. Decker, C.J. Hailey, L.C. Hale, F.A. Harrison, C.P. Jensen, K.K. Madsen, K. Mori, M.J. Pivovaroff, G. Tajiri, W.W. Zhang, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7437 (2009), Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7437. doi: 10.1117/12.826724Google Scholar
  48. R.P. Kraft, S.E. Vázquez, W.R. Forman, C. Jones, S.S. Murray, M.J. Hardcastle, D.M. Worrall, E. Churazov, ApJ 727, 41 (2011) doi: 10.1086/375533ADSCrossRefGoogle Scholar
  49. R. Kraft, W.R. Forman, C. Jones, P.E.J. Nulsen, M.J. Hardcastle, S. Raychaudhury, D.A. Evans, G. Sivakoff, C. Sarazin, ApJ 727, 41 (2011)ADSCrossRefGoogle Scholar
  50. L.D. Landau, E.M. Lifshitz, Fluid Mechanics(Pergamon, Oxford, 1959)Google Scholar
  51. M. Machacek, A. Dosaj, W. Forman, C. Jones, M. Markevitch, A. Vikhlinin, A. Warmflash, R. Kraft, ApJ 621, 663 (2005). doi: 10.1086/427548ADSCrossRefGoogle Scholar
  52. M. Machacek, C. Jones, W.R. Forman, P. Nulsen, ApJ 644, 155 (2006). doi: 10.1086/ 503350ADSCrossRefGoogle Scholar
  53. M.E. Machacek, R.P. Kraft, C. Jones, W.R. Forman, M.J. Hardcastle, ApJ 664, 804 (2007). doi: 10.1086/519233ADSCrossRefGoogle Scholar
  54. M. Markevitch, A. Vikhlinin, Phys. Rep. 443, 1 (2007). doi: 10.1016/j.physrep.2007.01. 001ADSCrossRefGoogle Scholar
  55. M. Markevitch, T.J. Ponman, P.E.J. Nulsen, M.W. Bautz, D.J. Burke, L.P. David, D. Davis, R.H. Donnelly, W.R. Forman, C. Jones, J. Kaastra, E. Kellogg, D.W. Kim, J. Kolodziejczak, P. Mazzotta, A. Pagliaro, S. Patel, L. Van Speybroeck, A. Vikhlinin, J. Vrtilek, M. Wise, P. Zhao, ApJ 541, 542 (2000)ADSCrossRefGoogle Scholar
  56. W.G. Mathews, F. Brighenti, ARAA 41, 191 (2003). doi: 10.1146/annurev.astro.41. 090401.094542ADSCrossRefGoogle Scholar
  57. B.R. McNamara, P.E.J. Nulsen, ARAA 45, 117 (2007). doi: 10.1146/annurev.astro.45. 051806.110625ADSCrossRefGoogle Scholar
  58. J. Magorrian, S. Tremaine, D. Richstone, R. Bender, G. Bower, A. Dressler, S.M. Faber, K. Gebhardt, R. Green, C. Grillmair, J. Kormendy, T. Lauer, AJ 115, 2285 (1998). doi: 10.1086/300353ADSCrossRefGoogle Scholar
  59. B.R. McNamara, M.W. Wise, P.E.J. Nulsen, L.P. David, C.L. Carilli, C.L. Sarazin, C.P. O’Dea, J. Houck, M. Donahue, S. Baum, M. Voit, R.W. O’Connell, A. Koekemoer, ApJ 562, L149 (2001). doi: 10.1086/338326ADSCrossRefGoogle Scholar
  60. B.R. McNamara, P.E.J. Nulsen, M.W. Wise, D.A. Rafferty, C. Carilli, C.L. Sarazin, E.L. Blanton, Nature 433, 45 (2005). doi: 10.1038/nature03202ADSCrossRefGoogle Scholar
  61. I.G. McCarthy, C.S. Frenk, A.S. Font, C.G. Lacey, R.G. Bower, N.L. Mitchell, M.L. Balogh, T. Theuns, MNRAS 383, 593 (2008). doi: 10.1111/j.1365-2966.2007.12577.xADSGoogle Scholar
  62. E. Memola, G. Trinchieri, A. Wolter, P. Focardi, B. Kelm, A&Ap 497, 359 (2009). doi: 10.1051/0004-6361/200810801ADSCrossRefGoogle Scholar
  63. U. Morita, Y. Ishisaki, N.Y. Yamasaki, N. Ota, N. Kawano, Y. Fukazawa, T. Ohashi, PASJ 58, 719 (2006)ADSGoogle Scholar
  64. J.S. Mulchaey, T.E. Jeltema, ApJ 715, L1 (2010). doi: 10.1088/2041-8205/715/1/L1ADSCrossRefGoogle Scholar
  65. P.E.J. Nulsen, MNRAS 198, 1007 (1982)ADSGoogle Scholar
  66. P.E.J. Nulsen, B.R. McNamara, M.W. Wise, L.P. David, ApJ 628, 629 (2005). doi: 10.1086/430845ADSCrossRefGoogle Scholar
  67. P.E.J. Nulsen, D.C. Hambrick, B.R. McNamara, D. Rafferty, L. Birzan, M.W. Wise, L.P. David, ApJ 625, L9 (2005). doi: 10.1086/430945ADSCrossRefGoogle Scholar
  68. P.E.J. Nulsen, C. Jones, W.R. Forman, L.P. David, B.R. McNamara, D.A. Rafferty, L. Bîrzan, M.W. Wise, in Heating versus Cooling in Galaxies and Clusters of Galaxies, ed. by H. Böhringer, G. W. Pratt, A. Finoguenov, P. Schuecker (2007), pp. 210–+Google Scholar
  69. A. Ohto, N. Kawano, Y. Fukazawa, PASJ 55, 819 (2003)ADSGoogle Scholar
  70. E. O’Sullivan, D.A. Forbes, T.J. Ponman, MNRAS 328, 461 (2001). doi: 10.1046/j. 1365-8711.2001.04890.xADSCrossRefGoogle Scholar
  71. E. O’Sullivan, J.M. Vrtilek, J.C. Kempner, ApJ 624, L77 (2005). doi: 10.1086/430600ADSCrossRefGoogle Scholar
  72. J.R. Peterson, A.C. Fabian, Phys. Rep. 427, 1 (2006). doi: 10.1016/j.physrep.2005.12.007ADSCrossRefGoogle Scholar
  73. C. Pfrommer, T.A. Enßlin, C.L. Sarazin, A&Ap 430, 799 (2005). doi: 10.1051/0004-6361: 20041576ADSCrossRefGoogle Scholar
  74. V. Quilis, B. Moore, R. Bower, Science 288, 1617 (2000). doi: 10.1126/science.288.5471. 1617ADSCrossRefGoogle Scholar
  75. S. Randall, P. Nulsen, W.R. Forman, C. Jones, M. Machacek, S.S. Murray, B. Maughan, ApJ 688, 208 (2008). doi: 10.1086/592324ADSCrossRefGoogle Scholar
  76. S.W. Randall, C. Jones, R. Kraft, W.R. Forman, E. O’Sullivan, ApJ 696, 1431 (2009). doi: 10.1088/0004-637X/696/2/1431ADSCrossRefGoogle Scholar
  77. S.W. Randall, C. Jones, M. Markevitch, E.L. Blanton, P.E.J. Nulsen, W.R. Forman, ApJ 700, 1404 (2009). doi: 10.1088/0004-637X/700/2/1404ADSCrossRefGoogle Scholar
  78. F.V.N. Rangarajan, D.A. White, H. Ebeling, A.C. Fabian, MNRAS 277, 1047 (1995)ADSGoogle Scholar
  79. D.A. Rafferty, B.R. McNamara, P.E.J. Nulsen, M.W. Wise, ApJ 652, 216 (2006). doi: 10.1086/507672ADSCrossRefGoogle Scholar
  80. E. Rizza, C. Loken, M. Bliton, K. Roettiger, J.O. Burns, F.N. Owen, AJ 119, 21 (2000). doi: 10.1086/301167ADSCrossRefGoogle Scholar
  81. E. Roediger, M. Brüggen, MNRAS 388, L89 (2008). doi: 10.1111/j.1745-3933.2008. 00506.xADSCrossRefGoogle Scholar
  82. I. Sakelliou, M.R. Merrifield, I.M. McHardy, MNRAS 283, 673 (1996)ADSGoogle Scholar
  83. C.L. Sarazin, ApL 20, 93 (1979)ADSGoogle Scholar
  84. C.L. Sarazin, in Merging Processes in Galaxy Clusters, ed. by L. Feretti, I.M. Gioia, G. Giovannini (Kluwer, Dordrecht, 2002), pp. 1–38Google Scholar
  85. C.L. Sarazin, R.W. O’Connell, B.R. McNamara, ApJ 389, L59 (1992). doi: 10.1086/186348ADSCrossRefGoogle Scholar
  86. C.A. Scharf, D.R. Zurek, M. Bureau, ApJ 633, 154 (2005). doi: 10.1086/444531ADSCrossRefGoogle Scholar
  87. S. Schreier, Compressible Flow(Wiley, New York, 1982), pp. 182-189Google Scholar
  88. G.R. Sivakoff, C.L. Sarazin, J.L. Carlin, ApJ 617, 262 (2004). doi: 10.1086/425244ADSCrossRefGoogle Scholar
  89. R.J. Smith, MNRAS 344, L17 (2003). doi: 10.1046/j.1365-8711.2003.06963.xADSCrossRefGoogle Scholar
  90. L.J. Spitzer, Physics of Fully Ionized Gases(Interscience, New York, 1956)zbMATHGoogle Scholar
  91. M. Sun, ApJ 704, 1586 (2009). doi: 10.1088/0004-637X/704/2/1586ADSCrossRefGoogle Scholar
  92. M. Sun, D. Jerius, C. Jones, ApJ 633, 165 (2005). doi: 10.1086/452620ADSCrossRefGoogle Scholar
  93. M. Sun, A. Vikhlinin, W. Forman, C. Jones, S.S. Murray, ApJ 619, 169 (2005). doi: 10.1086/425298ADSCrossRefGoogle Scholar
  94. M. Sun, C. Jones, W. Forman, A. Vikhlinin, M. Donahue, M. Voit, ApJ 657, 197 (2007). doi: 10.1086/510895ADSCrossRefGoogle Scholar
  95. S. Tremaine, K. Gebhardt, R. Bender, G. Bower, A. Dressler, S.M. Faber, A.V. Filippenko, R. Green, C. Grillmair, L.C. Ho, J. Kormendy, T.R. Lauer, J. Magorrian, J. Pinkney, D. Richstone, ApJ 574, 740 (2002). doi: 10.1086/341002ADSCrossRefGoogle Scholar
  96. G. Trinchieri, G. Fabbiano, D. Kim, A&Ap 318, 361 (1997)ADSGoogle Scholar
  97. J.C. Vernaleo, C.S. Reynolds, ApJ 645, 83 (2006). doi: 10.1086/504029ADSCrossRefGoogle Scholar
  98. A. Vikhlinin, M. Markevitch, S.S. Murray, ApJ 551, 160 (2001)ADSCrossRefGoogle Scholar
  99. A. Vikhlinin, M. Markevitch, W. Forman, C. Jones, ApJ 555, L87 (2001). doi: 10.1086/ 323181ADSCrossRefGoogle Scholar
  100. Q.D. Wang, F. Owen, M. Ledlow, W. Keel, in IAU Colloq. 195: Outskirts of Galaxy Clusters: Intense Life in the Suburbs, ed. by A. Diaferio (2004), pp. 78–82. doi: 10.1017/S174392130400016XGoogle Scholar
  101. R.E. White, III, C.L. Sarazin, ApJ 367, 476 (1991). doi: 10.1086/169644ADSCrossRefGoogle Scholar
  102. N.Y. Yamasaki, T. Ohashi, T. Furusho, ApJ 578, 833 (2002). doi: 10.1086/342652ADSCrossRefGoogle Scholar
  103. A.J. Young, A.S. Wilson, C.G. Mundell, ApJ 579, 560 (2002). doi: 10.1086/342918ADSCrossRefGoogle Scholar

Copyright information

© Springer New York 2012

Authors and Affiliations

  1. 1.Department of AstronomyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations