Advertisement

Hot Gas Flows on Global and Nuclear Galactic Scales

  • Silvia PellegriniEmail author
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 378)

Abstract

Since its discovery as an X-ray source with the EinsteinObservatory, the hot X-ray emitting interstellar medium of early-type galaxies has been studied intensively, taking advantage of observations of improving quality performed by the subsequent X-ray satellites ROSAT, ASCA, Chandraand XMM − Newton, and comparing the observational results with extensive modeling by means of numerical simulations. The hot medium originates from the ejecta produced by the normal stellar evolution, and during the galaxy lifetime it can be accumulated or expelled from the galaxy potential well. The main features of the hot gas evolution are outlined here, focussing on the mass and energy input rates, the relationship between the hot gas flow and the main properties characterizing its host galaxy, the flow behavior on the nuclear and global galactic scales, and the sensitivity of the flow to major galaxy properties as the shape of the mass distribution and the mean rotation velocity of the stars.

Keywords

Galactic Center Stellar Population Stellar Mass Galaxy Model Stellar Velocity Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I acknowledge support from the Italian Ministery of Education, University and Research (MIUR) through the Funding Program PRIN 2008.

References

  1. D.M. Acreman, I.R. Stevens, T.J. Ponman, I. Sakelliou, MNRAS 341, 1333 (2003)ADSGoogle Scholar
  2. S.W. Allen et al., MNRAS 372, 21 (2006)ADSGoogle Scholar
  3. A. Athey, J. Bregman, J. Bregman, P. Temi, M. Sauvage, ApJ 571, 272 (2002)ADSGoogle Scholar
  4. R. Bender, P. Surma, S. Doebereiner, C. Moellenhoff, R. Madejsky, A&A 217, 35 (1989)ADSGoogle Scholar
  5. M. Bernardi, R.K. Sheth, J.B. Annis et al., AJ 125, 1866 (2003)ADSGoogle Scholar
  6. G. Bertin, T. Toniazzo, ApJ 451, 111 (1995)ADSGoogle Scholar
  7. J. Binney, S. Tremaine, Galactic Dynamics(Princeton University Press, Princeton, NJ, 1987)zbMATHGoogle Scholar
  8. R.D. Blandford, M.C. Begelman, MNRAS 303, L1 (1999)ADSGoogle Scholar
  9. H. Bondi, MNRAS 112, 195 (1952)MathSciNetADSGoogle Scholar
  10. B. Boroson, D.W. Kim, G. Fabbiano, ApJ 729, 12 (2011)ADSGoogle Scholar
  11. N.J. Brassington, T.J. Ponman, A.M. Read, MNRAS 377, 1439 (2007)ADSGoogle Scholar
  12. J.N. Bregman, J.R. Parriott, ApJ 699, 923 (2009)ADSGoogle Scholar
  13. F. Brighenti, W.G. Mathews, ApJ 470, 747 (1996)ADSGoogle Scholar
  14. F. Brighenti, W.G. Mathews, ApJ 495, 239 (1998)ADSGoogle Scholar
  15. B.A. Brown, J.N. Bregman, ApJ 539, 592 (2000)ADSGoogle Scholar
  16. A. Capetti, B. Balmaverde, A&A 440, 73 (2005)ADSGoogle Scholar
  17. M. Cappellari, R. Bacon, M. Bureau et al., MNRAS 366, 1126 (2006)ADSGoogle Scholar
  18. E. Cappellaro, R. Evans, M. Turatto, A&A 351, 459 (1999)ADSGoogle Scholar
  19. E. Churazov, S. Sazonov, R. Sunyaev, W. Forman, C. Jones, H. Böhringer, MNRAS 363, L91 (2005)ADSGoogle Scholar
  20. L. Ciotti, A. D’Ercole, S. Pellegrini, A. Renzini, ApJ 376, 380 (1991)ADSGoogle Scholar
  21. L. Ciotti, S. Pellegrini, MNRAS 255, 561 (1992)ADSGoogle Scholar
  22. L. Ciotti, S. Pellegrini, MNRAS 279, 240 (1996)ADSGoogle Scholar
  23. L. Ciotti, J.P. Ostriker, ApJ 665, 1038 (2007)ADSGoogle Scholar
  24. L. Ciotti, J.P. Ostriker, D. Proga, ApJ 717, 708 (2010)ADSGoogle Scholar
  25. P. Côté et al., ApJS 165, 57 (2006)ADSGoogle Scholar
  26. D.J. Croton, V. Springel, S.D.M. White et al., MNRAS 365, 11 (2006)ADSGoogle Scholar
  27. L.P. David, W. Forman, C. Jones, ApJ 359, 29 (1990)ADSGoogle Scholar
  28. L.P. David, W. Forman, C. Jones, ApJ 369, 121 (1991)ADSGoogle Scholar
  29. L.P. David, C. Jones, W. Forman, I.M. Vargas, P. Nulsen, ApJ 653, 207 (2006)ADSGoogle Scholar
  30. R.L. Davies, G. Efstathiou, S.M. Fall, G. Illingworth, P.L. Schechter, ApJ 266, 41 (1983)ADSGoogle Scholar
  31. A. D’Ercole, L. Ciotti, ApJ 494, 535 (1998)ADSGoogle Scholar
  32. A. D’Ercole, L. Ciotti, S. Recchi, ApJ 533, 799 (2000)ADSGoogle Scholar
  33. S. Diehl, T.S. Statler, ApJ 668, 150 (2007)ADSGoogle Scholar
  34. S. Diehl, T.S. Statler, ApJ 680, 897 (2008a)ADSGoogle Scholar
  35. S. Diehl, T.S. Statler, ApJ 687, 986 (2008b)ADSGoogle Scholar
  36. T. Ebisuzaki, J. Makino, T.G. Tsuru et al., ApJ 562, L19 (2001)ADSGoogle Scholar
  37. S.C. Ellis, E. O’Sullivan, MNRAS 367, 627 (2006)ADSGoogle Scholar
  38. P.B. Eskridge, G. Fabbiano, D. Kim, ApJ 442, 523 (1995)ADSGoogle Scholar
  39. G. Fabbiano, ARA&A 27, 87 (1989)ADSGoogle Scholar
  40. G. Fabbiano, F. Schweizer, ApJ 447, 572 (1995)ADSGoogle Scholar
  41. S.M. Faber, J.S. Gallagher, ApJ 204, 365 (1976)ADSGoogle Scholar
  42. S.M. Faber, S. Tremaine, E.A. Ajhar et al., AJ 114, 1771 (1997)ADSGoogle Scholar
  43. A.C. Fabian, C.R. Canizares, Nature 333, 829 (1988)ADSGoogle Scholar
  44. L. Ferrarese, H. Ford, Space Sci. Rev. 116, 523 (2005)ADSGoogle Scholar
  45. A. Finoguenov, C. Jones, ApJ 547, L107 (2001)ADSGoogle Scholar
  46. W. Forman, P. Nulsen, S. Heinz et al., ApJ 635, 894 (2005)ADSGoogle Scholar
  47. J. Frank, A. King, D. Raine, Accretion Power in Astrophysics(Cambridge University Press, Cambridge, 2002)Google Scholar
  48. Y. Fukazawa, J.G. Botoya-Nonesa, J. Pu, A. Ohto, N. Kawano, ApJ 636, 698 (2006)ADSGoogle Scholar
  49. A.W. Graham, ApJ 613, L33 (2004)ADSGoogle Scholar
  50. L. Greggio, A&A 441, 1055 (2005)ADSzbMATHGoogle Scholar
  51. L. Greggio, MNRAS 406, 22 (2010)ADSGoogle Scholar
  52. A. Gualandris, D. Merritt, ApJ 678, 780 (2008)ADSGoogle Scholar
  53. P.C. Hanlan, J.N. Bregman, ApJ 530, 213 (2000)ADSGoogle Scholar
  54. S.F. Helsdon, T.J. Ponman, E. O’Sullivan, D.A. Forbes, MNRAS 325, 693 (2001)ADSGoogle Scholar
  55. L.C. Ho, ARA&A 46, 475 (2008)ADSGoogle Scholar
  56. P.J. Humphrey, D.A. Buote, ApJ 639, 136 (2006)ADSGoogle Scholar
  57. T.E. Jeltema, B. Binder, J.S. Mulchaey, ApJ 679, 1162 (2008)ADSGoogle Scholar
  58. G. Kauffmann, T.M. Heckman, MNRAS 397, 135 (2009)ADSGoogle Scholar
  59. D.W. Kim, G. Fabbiano, ApJ 586, 826 (2003)ADSGoogle Scholar
  60. D.W. Kim, E. Kim, G. Fabbiano, G. Trinchieri, ApJ 688, 931 (2008)ADSGoogle Scholar
  61. E.G. Körding, R.P. Fender, S. Migliari, MNRAS 369, 1451 (2006)ADSGoogle Scholar
  62. E. Komatsu, J. Dunkley, M.R. Nolta et al., ApJS 180, 330 (2009)ADSGoogle Scholar
  63. J. Kormendy, R. Bender, ApJ 464, L119 (1996)ADSGoogle Scholar
  64. J. Kormendy, D.B. Fisher, M.E. Cornell, R. Bender, ApJS 182, 216 (2009)ADSGoogle Scholar
  65. S. Laine, R.P. van der Marel, T.R. Lauer et al., AJ 125, 478 (2003)ADSGoogle Scholar
  66. T.R. Lauer et al., AJ 129, 2138 (1995)ADSGoogle Scholar
  67. T.R. Lauer, et al., ApJ 664, 226 (2007)ADSGoogle Scholar
  68. W. Li, et al., MNRAS 412, 1473 (2011)ADSGoogle Scholar
  69. M. Loewenstein, W.G. Mathews, ApJ 319, 614 (1987)ADSGoogle Scholar
  70. M. Loewenstein, R.F. Mushotzky, L. Angelini, K.A. Arnaud, E. Quataert, ApJ 555, L21 (2001)ADSGoogle Scholar
  71. J. MacDonald, M.E. Bailey, MNRAS 197, 995 (1981)ADSGoogle Scholar
  72. F. Mannucci, M. Della Valle, N. Panagia, E. Cappellaro, G. Cresci, R. Maiolino, A. Petrosian, M. Turatto, A&A 433, 807 (2005)ADSGoogle Scholar
  73. D. Maoz, F. Mannucci, W. Li, A.V. Filippenko, M. Della Valle, N. Panagia, MNRAS 412, 1508 (2011)ADSGoogle Scholar
  74. C. Maraston, MNRAS 362, 799 (2005)ADSGoogle Scholar
  75. W.G. Mathews, AJ 97, 42 (1989)ADSGoogle Scholar
  76. W.G. Mathews, ApJ 354, 468 (1990)ADSGoogle Scholar
  77. K. Matsushita, ApJ 547, 693 (2001)ADSGoogle Scholar
  78. E. Memola, G. Trinchieri, A. Wolter, P. Focardi, B. Kelm, A&A 497, 359 (2009)ADSGoogle Scholar
  79. A. Merloni, S. Heinz, MNRAS 381, 589 (2007)ADSGoogle Scholar
  80. M. Milosavljevic, D. Merritt, A. Rest, F.C. van den Bosch, MNRAS 331, L51 (2000)ADSGoogle Scholar
  81. R. Nagino, K. Matsushita, A&A 501, 157 (2009)ADSGoogle Scholar
  82. N.R. Napolitano, A.J. Romanowsky, M. Capaccioli et al., MNRAS 411, 2035 (2010)ADSGoogle Scholar
  83. R. Narayan, I. Yi, ApJ 452, 710 (1995)ADSGoogle Scholar
  84. J.F. Navarro, C.S. Frenk, S.D.M. White, ApJ 490, 493 (1997)ADSGoogle Scholar
  85. H. Omma, J. Binney, G. Bryan, A. Slyz, MNRAS 348, 1105 (2004)ADSGoogle Scholar
  86. E. O’Sullivan, D.A. Forbes, T.J. Ponman, MNRAS 328, 461 (2001)ADSGoogle Scholar
  87. E. O’Sullivan, T.J. Ponman, R.S. Collins, MNRAS 340, 1375 (2003)ADSGoogle Scholar
  88. J.R. Parriott, J.N. Bregman, ApJ 681, 1215 (2008)ADSGoogle Scholar
  89. A. Pasquali, F.C. van den Bosch, H.-W. Rix, ApJ 664, 738 (2007)ADSGoogle Scholar
  90. S. Pellegrini, E.V. Held, L. Ciotti, MNRAS 288, 1 (1997)ADSGoogle Scholar
  91. S. Pellegrini, L. Ciotti, A&A 333, 433 (1998)ADSGoogle Scholar
  92. S. Pellegrini, A&A 343, 23 (1999a)ADSGoogle Scholar
  93. S. Pellegrini, A&A 351, 487 (1999b)ADSGoogle Scholar
  94. S. Pellegrini, MNRAS 364, 169 (2005b)ADSGoogle Scholar
  95. S. Pellegrini, ApJ 624, 155 (2005a)ADSGoogle Scholar
  96. S. Pellegrini, A. Baldi, D.W. Kim, G. Fabbiano, R. Soria, A. Siemiginowska, M. Elvis, ApJ 667, 731 (2007)ADSGoogle Scholar
  97. S. Pellegrini, L. Ciotti, J.P. Ostriker, ApJ in press (arXiv:1107.3675) (2011)Google Scholar
  98. S. Pellegrini, ApJ 717, 640 (2010)ADSGoogle Scholar
  99. S. Pellegrini, ApJ 738, 57 (2011)ADSGoogle Scholar
  100. J.R. Peterson, A.C. Fabian, PhR 427, 1 (2006)ADSGoogle Scholar
  101. F. Pizzolato, N. Soker, MNRAS 408, 961 (2010)ADSGoogle Scholar
  102. E. Quataert, R. Narayan, ApJ 528, 236 (2000)ADSGoogle Scholar
  103. A.M. Read, T.J. Ponman, MNRAS 297, 143 (1998)ADSGoogle Scholar
  104. A. Renzini, L. Ciotti, ApJ 416, L49 (1993)ADSGoogle Scholar
  105. A. Renzini, L. Ciotti, A. D’Ercole, S. Pellegrini, ApJ 419, 52 (1993)ADSGoogle Scholar
  106. R.P. Saglia, G. Bertin, M. Stiavelli, ApJ 384, 433 (1992)ADSGoogle Scholar
  107. C.L. Sarazin, R.E. White III, ApJ 320, 32 (1987)ADSGoogle Scholar
  108. C.L. Sarazin, R.E. White III, ApJ 331, 102 (1988)ADSGoogle Scholar
  109. C.L. Sarazin, G.A. Ashe, ApJ 345, 22 (1989)ADSGoogle Scholar
  110. M. Sarzi, J.C. Shields, K. Schawinski et al., MNRAS 402, 2187 (2010)ADSGoogle Scholar
  111. K. Sharon, A. Gal-Yam, D. Maoz et al., ApJ 718, 876 (2010)ADSGoogle Scholar
  112. J. Shen, K. Gebhardt, ApJ 711, 484 (2010)ADSGoogle Scholar
  113. R. Soria, G. Fabbiano, A.W. Graham, A. Baldi, M. Elvis, H. Jerjen, S. Pellegrini, A. Siemiginowska, ApJ 640, 126 (2006)ADSGoogle Scholar
  114. M. Sun, C. Jones, W. Forman, A. Vikhlinin, M. Donahue, G.M. Voit, ApJ 657, 197 (2007)ADSGoogle Scholar
  115. M. Sun, G.M. Voit, M. Donahue, C. Jones, W. Forman, A. Vikhlinin, ApJ 693, 1142 (2009)ADSGoogle Scholar
  116. G. Tabor, J. Binney, MNRAS 263, 323 (1993)ADSGoogle Scholar
  117. S. Tang, Q.D. Wang, Y. Lu, H.J. Mo, MNRAS 392, 77 (2009)ADSGoogle Scholar
  118. S. Tang, Q.D. Wang, MNRAS 408, 1011 (2010)ADSGoogle Scholar
  119. J. Tonry, A. Dressler, J.P. Blakeslee et al., ApJ 546, 681 (2001)ADSGoogle Scholar
  120. G. Trinchieri, S. Pellegrini, G. Fabbiano et al., ApJ 688, 1000 (2008)ADSGoogle Scholar
  121. I. Trujillo, P. Erwin, A.A. Ramos, A.W. Graham, AJ 127, 1917 (2004)ADSGoogle Scholar
  122. A.M. Weijmans, M. Cappellari, R. Bacon et al., MNRAS 398, 561 (2009)ADSGoogle Scholar

Copyright information

© Springer New York 2012

Authors and Affiliations

  1. 1.Department of AstronomyUniversity of BolognaBolognaItaly

Personalised recommendations