Skip to main content

Anatomy and Physiology of the Injection Site: Implications for Extended Release Parenteral Systems

  • Chapter
  • First Online:
Long Acting Injections and Implants

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Understanding how the biological environment contributes to drug release following administration is increasingly becoming a focus for drug delivery research. Achieving therapeutic levels of a bioactive relies on appropriate drug release following parenteral administration that must be complimentary to subsequent drug absorption, distribution, metabolism and elimination. The biological characteristics of the injection site can have an influence on the drug absorption process. In this chapter the intravenous, intramuscular and subcutaneous routes for parenteral administration of extended release products will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    pH can also be lowered by the foreign body reaction to implants (see Chap.  3).

References

  1. Berges R, Bello U (2006) Effect of a new leuprorelin formulation on testosterone levels in patients with advanced prostate cancer. Curr Med Res Opin 22:649–655

    Article  PubMed  CAS  Google Scholar 

  2. Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56(11):1649–1659

    Article  PubMed  CAS  Google Scholar 

  3. Kreye F, Siepmann F, Siepmann J (2008) Lipid implants as drug delivery systems. Expert Opin Drug Deliv 5:291–307

    Article  PubMed  CAS  Google Scholar 

  4. Medlicott NJ, Waldron NA, Foster TP (2004) Sustained release veterinary parenteral products. Adv Drug Deliv Rev 56:1345–1365

    Article  PubMed  CAS  Google Scholar 

  5. Winzenburg G, Schmidt C, Fuchs S, Kissel T (2004) Biodegradable polymers and their potential use in parenteral veterinary drug delivery systems. Adv Drug Deliv Rev 56:1453–1466

    Article  PubMed  CAS  Google Scholar 

  6. Anderson FD, Archer DF, Harman SM, Leonard RJ, Wilborn WH (1993) Tissue response to bioerodible subcutaneous implants: A possible determinant of drug absorption kinetics. Pharm Res 10:369–380

    Article  PubMed  CAS  Google Scholar 

  7. Anderson JM, Niven H, Pelagalli J, Olanoff LS, Jones RD (1981) The role of the fibrous capsule in the function of implanted drug-polymer sustained release systems. J Biomed Mater Res 15:889–902

    Article  PubMed  CAS  Google Scholar 

  8. Daugherty AL, Cleland JL, Duenas EM, Mrsny RJ (1997) Pharmacological modulation of the tissue response to implanted polylactic-co-glycolic acid microspheres. Eur J Pharm Biopharm 44:89–102

    Article  CAS  Google Scholar 

  9. Higgins DM, Basaraba RJ, Hohnbaum AC, Lee EJ, Grainger DW, Gonzalez-Juarrero M (2009) Localized immunosuppressive environment in the foreign body response to implanted biomaterials. Am J Pathol 175:161–170

    Article  PubMed  CAS  Google Scholar 

  10. Medlicott NJ, Tucker IG (1999) Pulsatile release from subcutaneous implants. Adv Drug Deliv Rev 38:139–149

    Article  PubMed  CAS  Google Scholar 

  11. Traitel T, Goldbart R, Kost J (2008) Smart polymers for responsive drug-delivery systems. J Biomater Sci Polymer Edn 19:755–767

    Article  CAS  Google Scholar 

  12. Fletcher AP, Knappett CR (1953) N,N’-dibenzylethylenediamine penicillin: a new repository form of penicillin. Br Med J 1:188–189

    Article  PubMed  CAS  Google Scholar 

  13. Marder SR, Hubbard JW, van Putten T, Midha KK (1989) Pharmacokinetics of long acting injectable neuroleptic drugs: clinical implications. Psychopharmacology 98:433–439

    Article  PubMed  CAS  Google Scholar 

  14. Okada H (1997) One- and three-month release injectable microspheres of the LH-RH superagonist leuprorelin acetate. Adv Drug Deliv Rev 28:43–70

    Article  PubMed  CAS  Google Scholar 

  15. Perez-Marrero R, Tyler RC (2004) A subcutaneous delivery system for the extended release of leuprolide acetate for the treatment of prostate cancer. Expert Opin Pharmacother 5:447–457

    Article  PubMed  CAS  Google Scholar 

  16. Washington N, Washington C, Wilson CG (2001) Physiological pharmaceutics. Barriers to drug absorption, 2nd edn. Taylor and Francis, London

    Google Scholar 

  17. Cournarie F, Chéron M, Besnard M, Vauthier C (2004) Evidence for restrictive parameters in formulation of insulin-loaded nanocapsules. Eur J Pharm Biopharm 57(2):171–179

    Article  PubMed  CAS  Google Scholar 

  18. Goel R, Shah N, Visaria R, Paciotti G, Bischof J (2009) Biodistribution of TNF-alpha-coated gold nanoparticles in an in vivo model system. Nanomedicine 4:401–410

    Article  CAS  Google Scholar 

  19. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    Article  PubMed  CAS  Google Scholar 

  20. Patil Y, Sadhukha T, Ma L, Panyam J (2009) Nanoparticulate-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. J Control Release 136:21–29

    Article  PubMed  CAS  Google Scholar 

  21. Gaumet M, Vargas A, Gurny R, Delie F (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 69:1–9

    Article  PubMed  CAS  Google Scholar 

  22. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53(2):283–318

    PubMed  CAS  Google Scholar 

  23. Slack JD, Kanke M, Simmons GH, DeLuca PP (1981) Acute hemodynamic effects and blood pool kinetics of polystyrene microspheres following intravenous administration. J Pharm Sci 70:660–664

    Article  PubMed  CAS  Google Scholar 

  24. Banerjee T, Mitra S, Singh AK, Sharma RK, Maitra AC (2002) Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int J Pharm 243:93–105

    Article  PubMed  CAS  Google Scholar 

  25. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95:4607–4612

    Article  PubMed  CAS  Google Scholar 

  26. Jain RK (1987) Transport of molecules across tumor vasculature. Cancer Metastasis Rev 6:559–598

    Article  PubMed  CAS  Google Scholar 

  27. Tarner IH, Müller-Ladner U (2008) Drug delivery systems for the treatment of rheumatoid arthritis. Expert Opin Drug Deliv 5:1027–1037

    Article  PubMed  CAS  Google Scholar 

  28. Duncan R (1999) Polymer conjugates for tumour targeting and intracytoplasmic delivery. The EPR effect as a common gateway. Pharm Sci Technol Today 2:441–449

    Article  PubMed  CAS  Google Scholar 

  29. Torchilin VP (2000) Drug targeting. Eur J Pharm Sci 11(Suppl 2):S81–S91

    Article  PubMed  CAS  Google Scholar 

  30. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Frangioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170

    Article  PubMed  CAS  Google Scholar 

  31. Maried EN (1995) Human anatomy and physiology, 3rd edn. The Benjamin/Cummings Publishing Company, Redwood City, CA

    Google Scholar 

  32. Sullivan MJ, Saltin B, Negro-Vilar R, Duscha BD, Charles HC (1994) Skeletal muscle pH assessed by biochemical and 31P-MRS methods during exercise and recovery in men. J Appl Physiol 77:2194–2200

    PubMed  CAS  Google Scholar 

  33. Zuidema J, Kadir F, Titulaer HAC, Oussoren C (1994) Release and absorption rates of intramuscularly and subcutaneously injected pharmaceuticals (ii). Int J Pharm 105:189–207

    Article  CAS  Google Scholar 

  34. Evans EF, Proctor JD, Fratkin MJ, Velandia J, Wasserman AJ (1975) Blood flow in muscle groups and drug absorption. Clin Pharmacol Ther 17:44–47

    PubMed  CAS  Google Scholar 

  35. Korttila K, Linnoila M (1975) Absorption and sedative effects of diazepam after oral administration and intramuscular administration into the vastus lateralis muscle and the deltoid miscle. Br J Anaesth 47:857–862

    Article  PubMed  CAS  Google Scholar 

  36. Dandona P, Hooke D, Bell J (1978) Exercise and insulin absorption from subcutaneous tissue. Br Med J 1:479–480

    Article  PubMed  CAS  Google Scholar 

  37. Ylitalo P (1991) Effect of exercise on pharmacokinetics. Ann Med 23:289–294

    Article  PubMed  CAS  Google Scholar 

  38. Soni SM, Wiles D, Schiff AA, Bamrah JS (1988) Plasma levels of fluphenazine decanoate: effects of site of injection, massage and muscle activity. Br J Psychiatry 153:382–384

    Article  PubMed  CAS  Google Scholar 

  39. Bjerregaard S, Pedersen H, Vedstesen H, Vermehren C, Söderberg I, Frokjaer S (2001) Parenteral water/oil emulsions containing hydrophilic compounds with enhanced in vivo retention: Formulation, rheological characterisation and study of in vivo fate using whole body gamma-scintingraphy. Int J Pharm 215:13–27

    Article  PubMed  CAS  Google Scholar 

  40. Buxton ILO (2006) Pharmacokinetics and pharmacodynamics. In: Brunton LLD (ed) Goodman and Gilman’s the Pharmacological Basis of Therapeutics, 11th edn. McGraw-Hill, New York, pp 1–136

    Google Scholar 

  41. Cockshott WP, Thompson GT, Howlett LJ, Seeley ET (1982) Intramuscular or intralipomatous injections? N Engl J Med 307:356–358

    Article  PubMed  CAS  Google Scholar 

  42. Schmid-Schönbein GW (1990) Microlymphatics and lymph flow. Physiol Rev 70:987–1028

    PubMed  Google Scholar 

  43. Kuntz C, Wunsch A, Bödeker C, Bay F, Rosch R, Windeler J, Herfarth C (2000) Effect of pressure and gas type on intraabdominal, subcutaneous, and blood pH in laparoscopy. Surg Endosc 14:367–371

    Article  PubMed  CAS  Google Scholar 

  44. Jeppsson S (1972) Experience with depo-medroxyprogesterone acetate (Depo-provera) as a contraceptive agent. Acta Obstet Gynecol Scand 51:257–263

    Article  PubMed  CAS  Google Scholar 

  45. Jain J, Dutton C, Nicosia A, Wajszczuk C, Bode FR, Mishell DR Jr (2004) Pharmacokinetics, ovulation suppression and return to ovulation following a lower dose subcutaneous formulation of Depo-Provera®. Contraception 70:11–18

    Article  PubMed  CAS  Google Scholar 

  46. Sivin I, Campodonico I, Kiriwat O, Holma P, Diaz S, Wan L, Biswas A, Viegas O, el din Abdalla K, Anant MP, Pavez M, Stern J (1998) The performance of levonorgestrel rod and Norplant® contraceptive implants: a 5 year randomized study. Hum Reprod 13:3371–3378

    Article  PubMed  CAS  Google Scholar 

  47. Funk S, Miller MM, Mishell DR, Archer DF, Poindexter A, Schmidt J, Zampaglione E (2005) Safety and efficacy of Implanon™, a single-rod implantable contraceptive containing etonogestrel. Contraception 71:319–326

    Article  PubMed  CAS  Google Scholar 

  48. Guerrini VH, English PB, Filippich LJ, Schneider J, Bourne DWA (1986) Pharmacokinetic evaluation of a slow-release cefotaxime suspension in the dog and in sheep. Am J Vet Res 47:2057–2061

    PubMed  CAS  Google Scholar 

  49. Swartz MA (2001) The physiology of the lymphatic system. Adv Drug Deliv Rev 50:3–20

    Article  PubMed  CAS  Google Scholar 

  50. Porter CJH, Charman SA (2000) Lymphatic transport of proteins after subcutaneous administration. J Pharm Sci 89:297–310

    Article  PubMed  CAS  Google Scholar 

  51. Larsen C, Weng Larsen S, Jensen H, Yaghmur A, Østergaard J (2009) Role of in vitro release models in formulation development and quality control of parenteral depots. Exp Opin Drug Deliv 6:1283–1295

    Article  CAS  Google Scholar 

  52. McLennan DN, Porter CJH, Charman SA (2005) Subcutaneous drug delivery and the role of the lymphatics. Drug Discov Today Technol 2:89–96

    Article  CAS  Google Scholar 

  53. Porter CJH, Edwards GA, Charman SA (2001) Lymphatic transport of proteins after s.c. Injection: implications of animal model selection. Adv Drug Deliv Rev 50:157–171

    Article  PubMed  CAS  Google Scholar 

  54. Dunn AL, Heavner JE, Racz G, Day M (2010) Hyaluronidase: a review of approved formulations, indications and off-label use in chronic pain management. Expert Opin Bio Ther 10:127–131

    Article  CAS  Google Scholar 

  55. Bookbinder LH, Hofer A, Haller MF, Zepeda ML, Kellar GA, Lim JE, Edgington TS, Shepard HM, Patton JS, Frost GI (2006) A recombinant human enzyme for enhanced interstitial transport of therapeutics. J Control Release 114:230–241

    Article  PubMed  CAS  Google Scholar 

  56. Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51:692–743

    Google Scholar 

  57. Haglund BO, Joshi R, Himmelstein KJ (1996) An in situ gelling system for parenteral delivery. J Control Release 41:229–235

    Article  CAS  Google Scholar 

  58. Matschke C, Isele U, van Hoogevest P, Fahr A (2002) Sustained-release injectables formed in situ and their potential use for veterinary products. J Control Release 85:1–15

    Article  PubMed  CAS  Google Scholar 

  59. Veyries ML, Couarraze G, Geiger S, Agnely F, Massias L, Kunzli B, Faurisson F, Rouveix B (1999) Controlled release of vancomycin from poloxamer 407 gels. Int J Pharm 192(2):183–193

    Article  PubMed  CAS  Google Scholar 

  60. Yu L, Ding J (2008) Injectable hydrogels as unique biomedical materials. Chem Soc Rev 37:1473–1481

    Article  PubMed  CAS  Google Scholar 

  61. Khan MZI, Tucker IG, Opdebeeck JP (1993) Evaluation of cholesterol-lecithin implants for sustained delivery of antigen: release in vivo and single-step immunisation of mice. Int J Pharm 90:255–262

    Article  Google Scholar 

  62. Walduck AK, Opdepeeck JP, Benson HE, Prankerd R (1998) Biodegradable implants for the delivery of veterinary vaccines: design, manufacture and antibody responses in sheep. J Control Release 51:269–280

    Article  PubMed  CAS  Google Scholar 

  63. Katakam M, Ravis WR, Banga AK (1997) Controlled release of human growth hormone in rats following parenteral administration of poloxamer gels. J Control Release 49(1):21–26

    Article  CAS  Google Scholar 

  64. Katakam M, Ravis WR, Golden DL, Banga AK (1997) Controlled release of human growth hormone following subcutaneous administration in dogs. Int J Pharm 152:53–58

    Article  CAS  Google Scholar 

  65. Dong WY, Körber M, López Esguerra V, Bodmeirer R (2006) Stability of poly(d, l-lactide-co-glycolide) and leuprolide acetate in in-situ forming drug delivery systems. J Control Release 115:158–167

    Article  PubMed  CAS  Google Scholar 

  66. Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21:2475–2490

    Article  PubMed  CAS  Google Scholar 

  67. Kempe S, Metz H, Mäder K (2008) Do in situ forming PLG/NMP implants behave similar in vitro and in vivo? A non-invasive and quantitative epr investigation on the mechanisms of the implant formation process. J Control Release 130:220–225

    Article  PubMed  CAS  Google Scholar 

  68. Olanoff L, Anderson JM (1979) Controlled release of tetracycline ii: development of an in vivo flow-limited pharmacokinetic model. J Pharm Sci 68:1151–1155

    Article  PubMed  CAS  Google Scholar 

  69. Olanoff L, Koinis T, Anderson JM (1979) Controlled release of tetracycline I: In vitro studies with a trilaminate 2-hydroxyethyl methacrylate-methyl methacrylate system. J Pharm Sci 68:1147–1150

    Article  PubMed  CAS  Google Scholar 

  70. Olanoff L, Anderson JM (1980) Controlled release of tetracycline III: a physiological pharmacokinetic model of the pregnant rat. J Pharmacokinet Biopharm 8:599–620

    Article  PubMed  CAS  Google Scholar 

  71. Yamaguchi K, Anderson JM (1992) Biocompatibility studies of naltrexone sustained release formulations. J Control Release 19:299–314

    Article  CAS  Google Scholar 

  72. Hillaireau H, Couvreur P (2009) Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci 66:2973–2896

    Article  Google Scholar 

  73. Simone EA, Dziubla TD, Muzykantov VR (2008) Polymeric carriers: role of geometry in drug delivery. Exp Opin Drug Del 5:1283–1300

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie J. Medlicott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Controlled Release Society

About this chapter

Cite this chapter

McDowell, A., Medlicott, N.J. (2012). Anatomy and Physiology of the Injection Site: Implications for Extended Release Parenteral Systems. In: Wright, J., Burgess, D. (eds) Long Acting Injections and Implants. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0554-2_4

Download citation

Publish with us

Policies and ethics