Skip to main content

Historical Overview of Long Acting Injections and Implants

  • Chapter
  • First Online:
Long Acting Injections and Implants

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Long acting injections and implants emerged as a sub-area of pharmaceutics in the twentieth century, with companies dedicated to the field being established in the 1960s and 1970s. The field contains a wide range of system types. This chapter summarizes the historical development of the field, including rate-controlled membrane concepts, biodegradable polymer concepts, surface-releasing systems, liposomes, targeted/nanoscale systems, and microelectronic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman A (2008) The origins and evolution of “controlled” drug delivery systems. J Control Release 132:153–163

    Article  PubMed  CAS  Google Scholar 

  2. Deanesly R, Parkes AS (1937) Biological properties of some new derivatives of testosterone. Biochem J 31:1161–1164

    PubMed  CAS  Google Scholar 

  3. Chien YW (1982) Novel drug delivery systems. Dekker, New York

    Google Scholar 

  4. Dreyfuss J, Ross JJ, Shaw JM, Miller I, Schreiber EC (1976) Release and elimination of 14C-fluphenazine enanthate and decanoate esters administered in sesame oil to dogs. J Pharm Sci 65:502–507

    Article  PubMed  CAS  Google Scholar 

  5. Kirchmey FJ, Vincent HC (1956) Penicillin compositions for intramuscular injection. US Patent 2,741,573, 10 April 1956

    Google Scholar 

  6. Higuchi T (1963) Mechanism of sustained-action medication. J Pharm Sci 52:1145–1149

    Article  PubMed  CAS  Google Scholar 

  7. Folkman J, Long DM, Rosenbau R (1966) Silicone rubber – a new diffusion property useful for general anesthesia. Science 154:148–149

    Article  PubMed  CAS  Google Scholar 

  8. Folkman J, Long DM (1964) The use of silicone rubber as a carrier for prolonged drug therapy. J Surg Res 4:139–142

    Article  PubMed  CAS  Google Scholar 

  9. Heilmann K (1978) Therapeutic Systems. Goerg Thieme, Stuttgart

    Google Scholar 

  10. Langer R, Folkman J (1976) Polymers for the sustained release of proteins and other macromolecules. Nature 263:797–800

    Article  PubMed  CAS  Google Scholar 

  11. Rose S, Nelson JF (1955) Continuous long-term injection. Aust J Exp Biol 33:415–420

    Article  CAS  Google Scholar 

  12. Theeuwes F, Yum SI (1976) Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid drug formulations. Ann Biomed Eng 4:343–353

    Article  PubMed  CAS  Google Scholar 

  13. Wright JC, Leonard ST, Stevenson CL, Beck JC, Chen G, Jao RM, Johnson PA, Leonard J, Skowronski R (2001) An in vivo/in vitro comparison with a leuprolide osmotic implant for the treatment of prostate cancer. J Control Release 75:1–10

    Article  PubMed  CAS  Google Scholar 

  14. Schmitt E, Polistina R (1967) Surgical sutures. US Patent 3,297,033, 10 Jan 1967

    Google Scholar 

  15. Boswell G, Scribner R (1973) Polylactide-drug mixtures. US Patent 3,773,919, 20 Nov 1973

    Google Scholar 

  16. Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery – polyglycolic/poly(lactic acid) homo- and copolymers: 1. Polymer 20:1459–1464

    Article  CAS  Google Scholar 

  17. Reed AM, Gilding DK (1981) Biodegradable polymers for use in surgery – polyglycolic/poly(lactic acid) homo and copolymers: 2 In vitro degradation. Polymer 22:494–498

    Article  CAS  Google Scholar 

  18. Kent J, Lewis D, Sanders L, Tice T (1987) Microencapsulation of water soluble active Polypeptides. US Patent 4,675,189, 23 Jun 1987

    Google Scholar 

  19. Kwon G, Suwa S, Yokoyama M, Okano T, Sakurai Y, Kataoka K (1994) Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxide-aspartate) block copolymer-adriamycin conjugates. J Control Release 29:17–23

    Article  CAS  Google Scholar 

  20. Hutchinson FG, Furr BJ (1985) Biodegradable polymers for the sustained release of peptides. Biochem Soc Trans 13:520–523

    PubMed  CAS  Google Scholar 

  21. Hutchinson FG, Furr BJ (1990) Biodegradable polymer systems for the sustained release of polypeptides. J Control Release 13:279–294

    Article  CAS  Google Scholar 

  22. Gombotz W, Healy M, Brown L (1991) Very low temperature casting of controlled release microspheres. US Patent 5,019,400, 28 May 1991

    Google Scholar 

  23. Heller J, Barr J (2005) Biochronomer technology. Expert Opin Drug Deliv 2:169–183

    Article  PubMed  CAS  Google Scholar 

  24. Dunn RL (2003) The Atrigel drug delivery system. In: Rathbone MJ, Hadgraft J, Roberts MS (eds) Modified-release drug delivery technology, 1st edn. Dekker, NewYork, pp 647–655

    Google Scholar 

  25. Brem H, Langer R (1996) Polymer-based drug delivery to the brain. Sci Med 3:2–11

    Google Scholar 

  26. Zentner GM, Rathi R, Shih C, McRea JC, Seo MH, Oh H, Rhee BG, Mestecky J, Moldoveanu Z, Morgan M, Weitman S (2001) Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J Control Release 72:203–215

    Article  PubMed  CAS  Google Scholar 

  27. Bezemer JM, Radersma R, Grijpma DW, Dijkstra PJ, Feijen J, van Blitterswijk CA (2000) Zero-order release of lysozyme from poly(ethylene glycol)/poly(butylene terephthalate) ­matrices. J Control Release 64:179–192

    Article  PubMed  CAS  Google Scholar 

  28. Octoplus (2010) LOCTERON http://observer.octoplus.nl/index.cfm/octoplus/products/locteron/index.cfm. Accessed 6 Nov 2010

  29. Plate N, Valuev L (1986) Heparin-containing polymeric materials. Adv Polym Sci 79:95–137

    Article  CAS  Google Scholar 

  30. Westedt U, Wittmar M, Hellwig M, Hanefeld P, Greiner A, Schaper AK, Kissel T (2006) Paclitaxel releasing films consisting of poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) and their potential as biodegradable stent coatings. J Control Release 111:235–246

    Article  PubMed  CAS  Google Scholar 

  31. Wang Y, Burgess DJ (2010) Drug-device combination products. In: Lewis A (ed) Drug-device combination products: delivery technologies and applications. Woodhead Publishing, Cambridge

    Google Scholar 

  32. Mathe G, Lo TB, Bernard J (1958) Effect on mouse leukemia 1210 of a combination by diazo-reaction of amethopterin and gamma-globulins from hamsters inoculated with such leukemia by heterografts. C R Hebd Seances Acad Sci 246:1626–1628

    PubMed  CAS  Google Scholar 

  33. Ruoslahti E (2003) The RGD story: a personal account. Matrix Biol 22:459–465

    Article  PubMed  CAS  Google Scholar 

  34. Davis FF (2002) The origin of PEGnology. Adv Drug Del Rev 54:457–458

    Article  CAS  Google Scholar 

  35. Iwai K, Maeda H, Konno T (1984) Use of oily contrast medium for selective drug targeting to tumor: enhanced therapeutic effect and X-ray image. Cancer Res 44:2115–2121

    PubMed  CAS  Google Scholar 

  36. Trubetskoy V, Torchilin V (1995) Use of polyoxyethylene-lipid conjugates as long circulating carriers for delivery of therapeutic and diagnostic agents. Adv Drug Deliv Rev 16:311–320

    Article  CAS  Google Scholar 

  37. Martin F, Huang T (2003) Stealth Technology. In: Rathbone MJ, Hadgraft J, Roberts MS (eds) Modified-release drug delivery technology, 1st edn. Dekker, New York, pp 689–704

    Google Scholar 

  38. Nishiyama N, Kataoka K (2006) Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 112:630–648

    Article  PubMed  CAS  Google Scholar 

  39. Yokoyama M, Miyauchi M, Yamada N, Okano T, Sakurai Y, Kataoka K, Inoue S (1990) Polymer micelles as novel drug carrier - adriamycin-conjugated poly(ethylene glycol) poly(aspartic acid) block copolymer. J Control Release 11:269–278

    Article  CAS  Google Scholar 

  40. Kabanov AV, Chekhonin VP, Alakhov V, Batrakova EV, Lebedev AS, Melik-Nubarov NS, Arzhakov SA, Levashov AV, Morozov GV, Severin ES (1989) The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles. Micelles as microcontainers for drug targeting. FEBS Lett 258:343–345

    Article  PubMed  CAS  Google Scholar 

  41. Ringsdorf H (1975) Structure and properties of pharmacologically active polymers. J Polym Sci Symp 51:135–153

    Article  CAS  Google Scholar 

  42. Cuchelkar V, Kopecek J (2006) Polymer-drug conjugates. In: Uchegbu I, Schatzlein A (eds) Polymers in drug delivery. Taylor & Francis, London, pp 155–182

    Google Scholar 

  43. Duncan R, Cable HC, Lloyd JB, Rejmanova P, Kopecek J (1983) Polymers containing enzymatically degradable bonds.7. Design of oligopeptide side-chains in poly[n-(2-hydroxypropyl)methacrylamide] co-polymers to promote efficient degradation by lysosomal-enzymes. Makromol Chem Macromol Chem Phys 184:1997–2008

    Article  CAS  Google Scholar 

  44. Rejmanova P, Kopecek J, Pohl J, Baudys M, Kostka V (1983) Degradation of oligopeptide sequences in N-(2-hydroxypropyl)methacrylamide co-polymers by bovine spleen cathepsin-B. Makromol Chem 184:2009–2020

    Article  CAS  Google Scholar 

  45. Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360

    Article  PubMed  CAS  Google Scholar 

  46. Duncan R, Kopecek J (1984) Soluble synthetic-polymers as potential-drug carriers. Adv Polym Sci 57:51–101

    Article  CAS  Google Scholar 

  47. Santini J, Cima MJ, Langer R (1999) A controlled-release microchip. Nature (London) 397:335–338

    Article  CAS  Google Scholar 

  48. Harada A, Kataoka K (1999) Chain length recognition: core-shell supramolecular assembly from oppositely charged block copolymers. Science 283:65–67

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy C. Wright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Controlled Release Society

About this chapter

Cite this chapter

Wright, J.C., Hoffman, A.S. (2012). Historical Overview of Long Acting Injections and Implants. In: Wright, J., Burgess, D. (eds) Long Acting Injections and Implants. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0554-2_2

Download citation

Publish with us

Policies and ethics