Implantable Drug Delivery Systems Based on the Principles of Osmosis

  • John A. Culwell
  • Jose R. Gadea
  • Clarisa E. Peer
  • Jeremy C. Wright
Chapter
Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

Implantable, osmotically driven drug delivery systems are applicable to the delivery of small molecules, peptides, proteins, and other biomolecules, and continue to be used at the forefront of development of new clinical therapies. Sustained, zero-order drug delivery from osmotic implants has been shown to achieve consistent pharmacokinetics in multiple models and therapies. The continuous infusion features of these systems can provide improved economics, convenience, and therapeutic benefit versus bolus dosing. In animal research, ALZET osmotic implantable pumps have demonstrated the benefits of continuous infusion versus bolus dosing in various therapeutic applications, including chemotherapy, angiogenesis, and obesity. Osmotic implantable pumps have been selected for site-specific delivery to enable continuous local site infusion and avoidance of systemic effects. Applications include delivery to the spine (analgesia), tumors (oncology), cochlea (gene expression), and the brain (neurodegenerative applications). Human use applications using DUROS osmotic implantable pumps have provided delivery of agents from 1 month to over 1 year for treatment of pain, cancer, diabetes, and hepatitis.

Keywords

Permeability Cellulose Toxicity Hepatitis Dopamine 

Notes

Acknowledgments

The authors wish to acknowledge the contributions of their colleagues on the osmotic implant teams and would especially like to acknowledge helpful conversations with Dr. F. Theeuwes and Dr. L. Depass.

References

  1. 1.
    Eckenhoff B, Theeuwes F, Urquhart J (1987) Osmotically actuated dosage forms for rate-controlled delivery. Pharm Technol 11:96–105Google Scholar
  2. 2.
    Magruder J (1999) Pumps/osmotic: VITS veterinary implant. In: Mathiowitz E (ed) Encyclopedia of controlled drug delivery, vol 2. Wiley, New York, pp 906–909Google Scholar
  3. 3.
    Wong PSL, Gupta SK, Stewart BE (2003) Osmotically controlled tablets. In: Rathbone MJ, Hadgraft J, Roberts MS (eds) Modified-release drug delivery technology, 1st edn. Dekker, New York, pp 101–114Google Scholar
  4. 4.
    Wright JC, Johnson RM, Yum SI (2003) DUROS® osmotic pharmaceutical systems for parenteral and site-directed therapy. Drug Deliv Technol 3(1):3–11Google Scholar
  5. 5.
    Zingerman JR, Cardinal JR, Chern RT, Holste J, Williams JB, Eckenhoff B, Wright J (1997) The in vitro and in vivo performance of an osmotically controlled delivery system-IVOMEC SR® bolus. J Control Release 47:1–11CrossRefGoogle Scholar
  6. 6.
    Shah J (2008) Pharmacoeconomics of continuous drug administration using ALZET pumps. Special Deliv News Lett 25:5–6. http://www.alzet.com. Accessed Feb 2010Google Scholar
  7. 7.
    Theeuwes F, Yum SI (1976) Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid drug formulations. Ann Biomed Eng 4:343–353PubMedCrossRefGoogle Scholar
  8. 8.
    Stevenson CL, Theeuwes F, Wright JC (2000) Osmotic implantable delivery systems. In: Wise DL (ed) Handbook of pharmaceutical controlled release technology. Dekker, New York, pp 225–254Google Scholar
  9. 9.
    Sikic BI, Collins JM, Mimnaugh EG, Gram TE (1978) Improved therapeutic index of bleomycin when administered by continuous infusion in mice. Cancer Treat Rep 62:2011–2017PubMedGoogle Scholar
  10. 10.
    Dings RPM, van der Schaft DWJ, Hargittai B, Haseman J, Griffioen AW, Mayo KH (2003) Anti-tumor activity of the novel angiogenesis inhibitor anginex. Cancer Lett 194:55–66PubMedCrossRefGoogle Scholar
  11. 11.
    Dings RPM, Yokoyama Y, Ramakrishnan S, Griffioen AW, Mayo KH (2003) The designed angiostatic peptide anginex synergistically improves chemotherapy and antiangiogenesis therapy with angiostatin. Cancer Res 63:382–385PubMedGoogle Scholar
  12. 12.
    Tejeda M, Gaal D, Csuka O, Keri GY (2005) Growth inhibitory effect of the somatostatin structural derivative (TT-232) on leukemia models. Anticancer Res 25:325–330PubMedGoogle Scholar
  13. 13.
    El-Salhy M (2005) Effects of triple therapy with octreotide, galanin and serotonin on a human colon cancer cell line implanted in mice: comparison between different routes of administration. Histol Histopathol 20:19–25PubMedGoogle Scholar
  14. 14.
    Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen YY, Moller DE, Kharitonenkov A (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149(12):6018–6027PubMedCrossRefGoogle Scholar
  15. 15.
    Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115(6):1627–1635PubMedCrossRefGoogle Scholar
  16. 16.
    Lever IJ, Pheby TM, Rice ASC (2007) Continuous infusion of the cannabinoid WIN 55,212-2 to the site of a peripheral nerve injury reduces mechanical and cold hypersensitivity. Br J Pharmacol 151:292–302PubMedCrossRefGoogle Scholar
  17. 17.
    Brown JN, Miller JM, Altschuler RA, Nuttall AL (1993) Osmotic pump implant for chronic infusion of drugs into the inner ear. Hear Res 70:167–172PubMedCrossRefGoogle Scholar
  18. 18.
    Lalwani AK, Han JJ, Walsh BJ, Zolotukhin S, Muzyczka N, Mhatre AN (1997) Green fluorescent protein as a reporter for gene transfer studies in the cochlea. Hear Res 114:139–147PubMedCrossRefGoogle Scholar
  19. 19.
    Lalwani AK, Walsh BJ, Reilly PG, Carvalho GJ, Zolotukhin S, Muzyczka N, Mhatre AN (1998) Long-term in vivo cochlear transgene expression mediated by recombinant adeno-associated virus. Gene Ther 5:277–281PubMedCrossRefGoogle Scholar
  20. 20.
    Lalwani AK, Walsh BJ, Reilly PG, Muzyczka N, Mhatre AN (1996) Development of in vivo gene therapy for hearing disorders: introduction of adeno-associated virus into the cochlea of the guinea pig. Gene Ther 3:588–592PubMedGoogle Scholar
  21. 21.
    Luebke AE, Steiger JD, Hodges BL, Amalfitano A (2001) A modified adenovirus can transfect cochlear hair cells in vivo without compromising cochlear function. Gene Ther 8:789–794PubMedCrossRefGoogle Scholar
  22. 22.
    Wareing M, Mhatre AN, Pettis R, Han JJ, Haut T, Pfister HFP, Hong K, Zheng WW, Lalwani AK (1999) Cationic liposome mediated transgene expression in the guinea cochlea. Hear Res 128:61–69PubMedCrossRefGoogle Scholar
  23. 23.
    Li Y, Perry T, Kindy MS, Harvey BK, Tweedie D, Holloway HW, Powers K, Shen H, Egan JM, Sambamurti K, Brossi A, Lahiri DK, Mattson MP, Hoffer BJ, Wang Y, Greig NH (2009) GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc Natl Acad Sci 106(4):1285–1290PubMedCrossRefGoogle Scholar
  24. 24.
    Perry T, Haughey NJ, Mattson MP, Egan JM, Greig NH (2002) Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. J Pharmacol Exp Ther 302(3):881–888PubMedCrossRefGoogle Scholar
  25. 25.
    Gonzalo-Gobernado R, Reimers D, Herranz AS, Diaz-Gil JJ, Osuna C, Asensio MJ, Rodriquez-Serrano M, Bazan E (2009) Mobilization of neural stem cells and generation of new neurons in 6-OHDA-lesioned rats by intracerebroventricular infusion of liver growth factor. J Histochem Cytochem 57(5):491–502PubMedCrossRefGoogle Scholar
  26. 26.
    Reimers D, Herranz AS, Az-Gil JJ, Lobo MVT, Paino CL, Alonso R, Asensio MJ, Gonzalo-Gobernado R, Bazan E (2006) Intrastriatal infusion of liver growth factor stimulates dopamine terminal sprouting and partially restores motor function in 6-hydroxydopamine-lesioned rats. J Histochem Cytochem 54(4):457–465PubMedCrossRefGoogle Scholar
  27. 27.
    Kadota T, Shingo T, Yasuhara T, Tajiri N, Kondo A, Morimoto T, Yuan WJ, Wang F, Baba T, Tokunaga K, Miyoshi Y, Date I (2009) Continuous intraventricular infusion of erythropoietin exerts neuroprotective/rescue effects upon Parkinson’s disease model of rats with enhanced neurogenesis. Brain Res 1254:120–127PubMedCrossRefGoogle Scholar
  28. 28.
    Hong H-S, Rana S, Barrigan L, Shi A, Zhang Y, Zhou F, Jin L-W, Hua DH (2009) Inhibition of Alzheimer’s amyloid toxicity with a tricyclic pyrone molecule in vitro and in vivo. J Neurochem 108:1097–1108PubMedCrossRefGoogle Scholar
  29. 29.
    Crawford ED, DeAntonio EP, Labrie F, Schroder FH, Geller J (1995) Endocrine therapy of prostate cancer: optimal form and appropriate timing. J Clin Endocrinol Metab 80:1062–1078PubMedCrossRefGoogle Scholar
  30. 30.
    Huggins C, Hodges CV (1941) Studies of prostate cancer: I. Effect of castration, estrogen, and androgen injections on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 1:293–297Google Scholar
  31. 31.
    Wright JC, Leonard ST, Stevenson CL, Beck JC, Chen G, Jao RM, Johnson PA, Leonard J, Skowronski R (2001) An in vivo/in vitro comparison with a leuprolide osmotic implant for the treatment of prostate cancer. J Control Release 75:1–10PubMedCrossRefGoogle Scholar
  32. 32.
    Fowler JE, Flanagan M, Gleason DM, Klimberg IW, Gottesman JE, Sharifi R (2000) for the VIADUR STUDY GROUP. Evaluation of an implant that delivers leuprolide for 1 year for the palliative treatment of prostate cancer. Urology 55(5):639–642PubMedCrossRefGoogle Scholar
  33. 33.
    Rohloff CM, Alessi TR, Yang B, Dahms J, Carr JP, Lautenbach SD (2008) DUROS® technology delivers peptides and proteins at consistent rate continuously for 3 to 12 months. J Diabetes Sci Technol 2:461–467PubMedGoogle Scholar
  34. 34.
    Yang B, Rohloff C, Mercer R, Horwege K, Negulescu C, Lautenbach S, Weeks E, Gumucio J, Gou M, Ford D, Carr J, Alessi T (2008) Continuous delivery of stabilized proteins and peptides at consistent rates for at least 3 months from the DUROS® device. Am Assoc Pharm Sci Annual Meeting, T3150Google Scholar
  35. 35.
    Luskey K, McNally J, Dahms J, Logan D, Weiner G, Denham D, Alessi T (2009) A Phase 1b Study of ITCA 650: Continuous Subcutaneous Delivery of Exenatide via DUROS® Device Lowers Fasting and Postprandial Plasma Glucose. 45th Annual Meeting of the European Association for the Study of Diabetes, Vienna, Austria, Poster 780Google Scholar
  36. 36.
    Yang B, Negulescu C, D’vaz R, Eftimie C, Carr J, Lautenbach S, Horwege K, Mercer R, Ford D, Alessi T (2009) Stability of ITCA 650 for continuous subcutaneous delivery of exenatide at body temperature for 12 Months. Nov. 6, 2009 presentation at the Ninth Annual Diabetes Technology Meeting in San Francisco, CA. http://www.intarcia.com/documents/11609DUROSPosterDiabetesTechMtg.pdf. Accessed Mar 2010
  37. 37.
    Intarcia Therapeutics, Inc. http://www.intarcia.com. Accessed Jan 2011
  38. 38.
    Weingaart JD, Rhines LD, Brem H (2000) Intratumoral chemotherapy. In: Bernstein M, Berger MS (eds) Neuro-oncology: the essentials. Thieme Medical, New York, pp 240–248Google Scholar
  39. 39.
    Storm PB, Clatterbuck RE, Liu YJ, Johnson RM, Gillis EM, Guarnieri M, Carson BS (2003) A surgical technique for safely placing a drug delivery catheter into the pons of primates: preliminary results of carboplatin infusion. Neurosurgery 52:1169–1177PubMedCrossRefGoogle Scholar
  40. 40.
    Strege RJ, Liu YJ, Kiely A, Johnson RM, Gillis EM, Storm P, Carson BS, Jallo GI, Guarnieri M (2004) Toxicity and cerebrospinal fluid levels of carboplatin chronically infused into the brainstem of a primate. J Neurooncol 67:327–334PubMedCrossRefGoogle Scholar
  41. 41.
    Intarcia Therapeutics, Inc. http://www.intarcia.com. Accessed Mar 2010PubMedCrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2012

Authors and Affiliations

  • John A. Culwell
    • 1
  • Jose R. Gadea
    • 1
  • Clarisa E. Peer
    • 1
  • Jeremy C. Wright
    • 1
  1. 1.DURECT CorporationCupertinoUSA

Personalised recommendations