Skip to main content

Protein PEGylation

  • Chapter
  • First Online:
Book cover Long Acting Injections and Implants

Abstract

The covalent linking of poly(ethylene glycol) (PEG) has become the leading approach to improving the therapeutic efficacy of proteins. This highly hydrophilic synthetic polymer possesses unique properties that allowed PEG to emerge as the best candidate for protein modification. Beside the proven success of PEG conjugates already on the market, it should be noted that other derivatives are presently under advanced clinical trials. The increased half-life of the conjugates is probably the main reason for performing PEGylation. In addition, the possibility to greatly reduce the immunogenicity of a given protein is also a strong and determinant incentive. This last advantage offers the possibility to safely use, in the clinic, heterologous proteins that otherwise might trigger dramatic immunogenic responses or even anaphylactic reactions. This chapter introduces the reader to PEGylation strategies showing in detail its potential and the achievements obtained in the recent years. Furthermore, the future perspectives of the technique are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7:21–39

    Article  PubMed  CAS  Google Scholar 

  2. Pasut G, Veronese FM (2007) Polymer–drug conjugation, recent achievements and general strategies. Prog Polym Sci 32:933–961

    Article  CAS  Google Scholar 

  3. Schulte S (2008) Use of albumin fusion technology to prolong the half-life of recombinant factor VIIa. Thromb Res 122(Suppl 4):S14–19

    Article  PubMed  CAS  Google Scholar 

  4. Platis D, Lalron NE (2008) Chemical and genetic engineering strategies to improve the potency of pharmaceutical proteins and enzymes. Curr Med Chem 15:1940–1955

    Article  PubMed  CAS  Google Scholar 

  5. Bailon P, Palleroni A, Schaffer CA, Spence CL, Fung WJ, Porter JE, Ehrlich GK, Pan W, Xu ZX, Modi MW, Farid A, Berthold W, Graves M (2001) Rational design of a potent, long-lasting form of interferon: a 40 kDa branched polyethylene glycol-conjugated interferon alpha-2a for the treatment of hepatitis C. Bioconjug Chem 12:195–202

    Article  PubMed  CAS  Google Scholar 

  6. Veronese FM, Largajolli R, Boccù E, Benassi CA, Schiavon O (1985) Surface modification of proteins.Activation of monomethoxy-polyethylene glycols by phenylchloroformates and modification of ribonuclease and superoxide dismutase. Appl Biochem Biotechnol 11:141–152

    Article  PubMed  CAS  Google Scholar 

  7. Wang YS, Youngster S, Grace M, Bausch J, Bordens R, Wyss DF (2002) Structural and biological characterisation of pegylated recombinant interferon α-2b and its therapeutic implications. Adv Drug Deliv Rev 54:547–570

    Article  PubMed  CAS  Google Scholar 

  8. Kinstler O, Moulinex G, Treheit M, Ladd D, Gegg C (2002) Mono-N-terminal poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev 54:477–485

    Article  PubMed  CAS  Google Scholar 

  9. Veronese FM, Mero A, Caboi F, Sergi M, Marongiu C, Pasut G (2007) Site-specific pegylation of G-CSF by reversible denaturation. Bioconjug Chem 18:1824–1830

    Article  PubMed  CAS  Google Scholar 

  10. Fontana A, Spolaore B, Mero A, Veronese FM (2008) Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv Drug Deliv Rev 60:13–28

    Article  PubMed  CAS  Google Scholar 

  11. Veronese FM (2009) PEGylated protein drugs: basic science and clinical applications. Birkhäuser Verlag, Basel

    Book  Google Scholar 

  12. Harris JM, Chess RB (2003) Effect of PEGylation on pharmaceuticals. Nat Rev Drug Discov 2:214–221

    Article  PubMed  CAS  Google Scholar 

  13. Fee CJ, Van Alstine JM (2004) Prediction of the viscosity radius and the size exclusion chromatography behavior of PEGylated proteins. Bioconjug Chem 15:1304–1313

    Article  PubMed  CAS  Google Scholar 

  14. Harris JM (1991) Poly(ethylene glycol) chemistry: biotechnical and biomedical applications. Plenum, New York

    Google Scholar 

  15. Yamaoka T, Tabata Y, Ikada Y (1994) Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sc 83:601–606

    Article  CAS  Google Scholar 

  16. Yamaoka T, Tabata Y, Ikada Y (1995) Fate of water-soluble administered via different routes. J Pharm Sci 84:349–354

    Article  PubMed  CAS  Google Scholar 

  17. Pasut G, Veronese FM (2009 a) PEG conjugates in clinical development or use as anticancer agents: an overview. Adv Drug Deliv Rev 61:1177–1188

    Article  PubMed  CAS  Google Scholar 

  18. Wang M, Basu A, Palm T, Hua J, Youngster S, Hwang L, Liu HC, Li X, Peng P, Zhang Y, Zhao H, Zhang Z, Longley C, Mehlig M, Borowski V, Sai P, Viswanathan M, Jang E, Petti G, Liu S, Yang K, Filpula D (2006) Engineering an arginine catabolizing bioconjugate: Biochemical and pharmacological characterization of PEGylated derivatives of arginine deiminase from Mycoplasma arthritidis. Bioconjug Chem 17:1447–1459

    Article  PubMed  CAS  Google Scholar 

  19. Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF (1977) Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem 252:3582–3586

    PubMed  CAS  Google Scholar 

  20. Yang Z, Wang J, Lu Q, Xu J, Kobayashi Y, Takakura T, Takimoto A, Yoshioka T, Lian C, Chen C, Zhang D, Zhang Y, Li S, Sun X, Tan Y, Yagi S, Frenkel EP, Hoffman RM (2004) PEGylation confers greatly extended half-life and attenuated immunogenicity to recombinant methioninase in primates. Cancer Res 64:6673–6678

    Article  PubMed  CAS  Google Scholar 

  21. An Q, Lei Y, Jia N, Zhang X, Bai Y, Yi J, Chen R, Xia A, Yang J, Wei S (2007) Effect of site-directed PEGylation of trichosanthin on its biological activity, immunogenicity, and pharmacokinetics. Biomol Eng 24:643–649

    Article  PubMed  CAS  Google Scholar 

  22. Walsh S, Shah A, Mond J (2003) Improved pharmacokinetics and reduced antibody reactivity of lysostaphin conjugated to polyethylene glycol. Antimicrob Agents Chemother 47:554–558

    Article  PubMed  CAS  Google Scholar 

  23. Basu A, Yang K, Wang M, Liu S, Chintala M, Palm T, Zhao H, Peng P, Wu D, Zhang Z, Hua J, Hsieh MC, Zhou J, Petti G, Li X, Janjua A, Mendez M, Liu J, Longley C, Zhang Z, Mehlig M, Borowski V, Viswanathan M, Filpula D (2006) Structure-function engineering of interferon-beta-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjug Chem 17:618–630

    Article  PubMed  CAS  Google Scholar 

  24. Tsutsumi Y, Kihira T, Tsunoda S, Okada N, Kaneda Y, Ohsugi Y, Miyake M, Nakagawa S, Mayumi T (1995) Polyethylene glycol modification of interleukin-6 enhances its thrombopoietic activity. J Control Release 33:447–451

    Article  CAS  Google Scholar 

  25. Shibata H, Yoshioka Y, Ikemizu S, Kobayashi K, Yamamoto Y, Mukai Y, Okamoto T, Taniai M, Kawamura M, Abe Y, Nakagawa S, Hayakawa T, Nagata S, Yamagata Y, Mayumi T, Kamada H, Tsutsumi Y (2004) Functionalization of tumor necrosis factor-alpha using phage display technique and PEGylation improves its antitumor therapeutic window. Clin Cancer Res 10:8293–8300

    Article  PubMed  CAS  Google Scholar 

  26. Youn YS, Jung JY, Oh SH, Yoo SD, Lee KC (2006) Improved intestinal delivery of salmon calcitonin by Lys18-amine specific PEGylation: stability, permeability, pharmacokinetic behavior and in vivo hypocalcemic efficacy. J Control Release 114:334–342

    Article  PubMed  CAS  Google Scholar 

  27. Cox GN, Rosendhal MS, Chlipala EA, Smith DJ, Carlson SJ, Doherty DHA (2001) Lond-acting, mono-PEGylated human growth hormone analog is a potent stimulator of weight gain and bone growth in hypophysectomized rats. Endocrinology 4:1590–1597

    Google Scholar 

  28. Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54:459–476

    Article  PubMed  CAS  Google Scholar 

  29. Wong SS (1991) Reactive groups of proteins and their modifying agents. In: Wong SS (ed) Chemistry of protein conjugation and cross-linking. CRC, Boston

    Google Scholar 

  30. Saito G, Swanson JA, Lee K (2003) Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug Deliv Rev 55:199–215

    Article  PubMed  CAS  Google Scholar 

  31. Baudys M, Uchio T, Mix D, Wilson D, Kim SW (1995) Physical stabilization of insulin by glycosylation. J Pharm Sci 84:28–33

    Article  PubMed  CAS  Google Scholar 

  32. Esposito P, Barbero L, Caccia P, Caliceti P, D’Antonio M, Piquet G, Veronese FM (2003) PEGylation of growth-releasing hormone (GRF) analogues. Adv Drug Deliv Rev 55:1279–1292

    Article  PubMed  CAS  Google Scholar 

  33. Piquet G, Gatti M, Barbero L, Traversa S, Caccia P, Esposito P (2002) Set-up of a large laboratory scale chromatographic separation of poly(ethylene glycol) derivatives of the growth hormone-releasing factor 1–29 analogue. J Chromatogr A944:141–148

    Article  Google Scholar 

  34. Monfardini C, Schiavon O, Caliceti P, Morpurgo M, Harris JM, Veronese FM (1995) A branched monomethoxypoly(ethylene glycol) for protein modification. Bioconjug Chem 6:62–69

    Article  PubMed  CAS  Google Scholar 

  35. Balan S, Choi J-W, Godwin A, Teo I, Laborde CM, Heidelberger S, Zloh M, Shaunak S, Brocchini S (2007) Site-specific PEGylation of protein disulfide bonds using a three-carbon bridge. Bioconjug Chem 18:61–76

    Article  PubMed  CAS  Google Scholar 

  36. Choi J-W, Godwin A, Balan S, Bryant P, Cong Y, Pawlisz E, Porssa M, Rumpf N, Singh R, Powell K, Brocchini S (2009) Rebridging disulphides: site-specific PEGylation by sequential bis-alkylation. In: Veronese FM (ed) PEGylated protein drugs: basic science and clinical applications. Birkhäuser Verlag, Basel

    Google Scholar 

  37. Sato H (2002) Enzymatic procedure for site-specific pegylation of proteins. Adv Drug Deliv Rev 54:487–504

    Article  PubMed  CAS  Google Scholar 

  38. DeFrees S, Wang Z, Xing R, Scott AE, Wang J, Zopf D, Gouty DL, Sjoberg ER, Panneerselvam K, Brinkman-Van der Linden ECM, Bayer AR, Tarp MA, Clausen H (2006) GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli. Glycobiology 16:833–843

    Article  PubMed  CAS  Google Scholar 

  39. Cox G (1999) Derivative of growth hormone and related proteins. Bolder Biotechnology Inc. WO9903887

    Google Scholar 

  40. Goffin V, Bernichtein S, Carriere O, Bennett WF, Kopchick JJ, Kelly PA (1999) The human growth hormone antagonist B2036 does not interact with the prolactine receptor. Endocrinology 140:3853–3856

    Article  PubMed  CAS  Google Scholar 

  41. Wolfson W (2006) Amber codon flashing ambrx augments proteins with unnatural amino acids. Chem Biol 13:1011–1012

    Article  PubMed  CAS  Google Scholar 

  42. Levy Y, Hershfield MS, Fernandez-Mejia C, Polmar SH, Scrudiery D, Berger M, Soresen RU (1988) Adenosine deiminase deficiency with late onset or recurrent infections: response to treatment with polyethylene glycol modified adenosine deiminase. J Pediatr 113:312–317

    Article  PubMed  CAS  Google Scholar 

  43. Wylie DC, Voloch M, Lee S, Liu YH, Cannon-Carlson S, Cutler C, Pramanik B (2001) Carboxyalkylated histidine is a pH-dependent product of pegylation with SC-PEG. Pharm Res 18:1354–1360

    Article  PubMed  CAS  Google Scholar 

  44. Pasut G (2009) PEGylated α Interferons: two different strategies to achieve increased efficacy. In: Veronese FM (ed) PEGylated protein drugs: basic science and clinical applications. Birkhäuser Verlag, Basel

    Google Scholar 

  45. Escudero A, Rodriguez F, Serra MA, Del Olmo JA, Montes F, Rodrigo JM (2008) Pegylated alpha-interferon-2a plus ribavarin compared with pegylated alpha-interferon-2b plus ribavarin for initial treatment of chronic hepatitis C virus: prospective, non-randomized study. J Gastroenterol Hepatol 23:861–866

    Article  PubMed  CAS  Google Scholar 

  46. Weiland O (1999) Treatment of naive patients with chronic hepatitis C. J Hepatol 31(Suppl 1): 168–173

    Article  PubMed  Google Scholar 

  47. Monkarsh SP, Ma Y, Aglione A, Nailon P, Ciolek D, DeBarbieri B, Graves MC, Hollfelder K, Michel H, Palleroni A, Porter JE, Russoman E, Roy S, Pan YC (1997) Positional isomers of monopegylated interferon alpha-2a: isolation, characterization, and biological activity. Anal Biochem 247:434–440

    Article  PubMed  Google Scholar 

  48. Reddy KR, Modi MW, Pedder S (2002) Use of peginterferon α2a (40KD) (Pegasys®) for the treatment of hepatitis C. Adv Drug Deliv Rev 54:571–586

    Article  Google Scholar 

  49. Kinstler OB, Brems DN, Lauren SL, Paige AG, Hamburger JB, Treuheit MJ (1995) Characterization and stability of N-terminally pegylated rhG-CSF. Pharm Res 13:996–1002

    Article  Google Scholar 

  50. Manjula BN, Tsai A, Upadhya R, Perumalsamy K, Smith PK, Malavalli A, Vandegriff K, Winslow RM, Intaglietta M, Prabhakaran M, Friedman JM, Acharya AS (2003) Site-specific PEGylation of hemoglobin at Cys-93(β): correlation between the colligative properties of the PEGylated protein and the length of the conjugated PEG chain. Bioconjug Chem 14:464–472

    Article  PubMed  CAS  Google Scholar 

  51. Acharya AS, Manjula BN, Smith PK (1996) Hemoglobin crosslinkers. Einstein College of Medicine, University of Yeshiva, NY: US5585484

    Google Scholar 

  52. Nesbitt AM, Stephens S, Chartash EK (2009) Certolizumab pegol: a PEGylated anti-tumour necrosis factor alpha biological agent. In: Veronese FM (ed) PEGylated protein drugs: basic science and clinical applications. Birkhäuser Verlag, Basel

    Google Scholar 

  53. Weir N, Athwal D, Brown D, Foulkes R, Kollias G, Nesbitt AM, Popplewell A, Spitali M, Stephens S (2006) A new generation of high-affinity humanized PEGylated Fab’ fragment anti-tumor necrosis factor-α monoclonal antibodies. Therapy 3:535–545

    CAS  Google Scholar 

  54. Nesbitt AM, Fossati G, Bergin M, Stephens P, Stephens S, Foulkes R, Brown D, Robinson M, Bourne T (2007) Mechanism of action of certolizumab pegol (CDP870): in vitro comparison with other anti-tumour necrosis factor alpha agents. Inflamm Bowel Dis 13:1323–1332

    Article  PubMed  Google Scholar 

  55. Ruckman J, Green LS, Beeson J, Waugh S, Gillette WL, Henninger DD, Claesson-Welsh L, Janjić N (1998) 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exan 7-encoded domain. J Biol Chem 273:20556–20567

    Article  PubMed  CAS  Google Scholar 

  56. Trucker CE, Chen LS, Judkins MB, Farmer JA, Gill SC, Drolet DW (1999) Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys. J Chromatogr B Biomed Sci Appl 732:203–212

    Article  Google Scholar 

  57. Greenwald RB, Choe YH, McGuire J, Conover CD (2003) Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliv Rev 55:217–250

    Article  PubMed  CAS  Google Scholar 

  58. Pasut G, Veronese FM (2009) Pegylation for improving the effectiveness of therapeutic biomolecules. Drugs Today 45:687–695

    Article  PubMed  CAS  Google Scholar 

  59. Tanaka H, Satake-Ishikawa R, Ishikawa M, Matsuki S, Asano K (1991) Pharmacokinetics of recombinant human granulocyte colony-stimulating factor conjugated to polyethylene glycol in rats. Cancer Res 51:3710–3714

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianfranco Pasut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Controlled Release Society

About this chapter

Cite this chapter

Veronese, F.M., Pasut, G. (2012). Protein PEGylation. In: Wright, J., Burgess, D. (eds) Long Acting Injections and Implants. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0554-2_15

Download citation

Publish with us

Policies and ethics