Protein PEGylation

Chapter

Abstract

The covalent linking of poly(ethylene glycol) (PEG) has become the leading approach to improving the therapeutic efficacy of proteins. This highly hydrophilic synthetic polymer possesses unique properties that allowed PEG to emerge as the best candidate for protein modification. Beside the proven success of PEG conjugates already on the market, it should be noted that other derivatives are presently under advanced clinical trials. The increased half-life of the conjugates is probably the main reason for performing PEGylation. In addition, the possibility to greatly reduce the immunogenicity of a given protein is also a strong and determinant incentive. This last advantage offers the possibility to safely use, in the clinic, heterologous proteins that otherwise might trigger dramatic immunogenic responses or even anaphylactic reactions. This chapter introduces the reader to PEGylation strategies showing in detail its potential and the achievements obtained in the recent years. Furthermore, the future perspectives of the technique are also discussed.

References

  1. 1.
    Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7:21–39PubMedCrossRefGoogle Scholar
  2. 2.
    Pasut G, Veronese FM (2007) Polymer–drug conjugation, recent achievements and general strategies. Prog Polym Sci 32:933–961CrossRefGoogle Scholar
  3. 3.
    Schulte S (2008) Use of albumin fusion technology to prolong the half-life of recombinant factor VIIa. Thromb Res 122(Suppl 4):S14–19PubMedCrossRefGoogle Scholar
  4. 4.
    Platis D, Lalron NE (2008) Chemical and genetic engineering strategies to improve the potency of pharmaceutical proteins and enzymes. Curr Med Chem 15:1940–1955PubMedCrossRefGoogle Scholar
  5. 5.
    Bailon P, Palleroni A, Schaffer CA, Spence CL, Fung WJ, Porter JE, Ehrlich GK, Pan W, Xu ZX, Modi MW, Farid A, Berthold W, Graves M (2001) Rational design of a potent, long-lasting form of interferon: a 40 kDa branched polyethylene glycol-conjugated interferon alpha-2a for the treatment of hepatitis C. Bioconjug Chem 12:195–202PubMedCrossRefGoogle Scholar
  6. 6.
    Veronese FM, Largajolli R, Boccù E, Benassi CA, Schiavon O (1985) Surface modification of proteins.Activation of monomethoxy-polyethylene glycols by phenylchloroformates and modification of ribonuclease and superoxide dismutase. Appl Biochem Biotechnol 11:141–152PubMedCrossRefGoogle Scholar
  7. 7.
    Wang YS, Youngster S, Grace M, Bausch J, Bordens R, Wyss DF (2002) Structural and biological characterisation of pegylated recombinant interferon α-2b and its therapeutic implications. Adv Drug Deliv Rev 54:547–570PubMedCrossRefGoogle Scholar
  8. 8.
    Kinstler O, Moulinex G, Treheit M, Ladd D, Gegg C (2002) Mono-N-terminal poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev 54:477–485PubMedCrossRefGoogle Scholar
  9. 9.
    Veronese FM, Mero A, Caboi F, Sergi M, Marongiu C, Pasut G (2007) Site-specific pegylation of G-CSF by reversible denaturation. Bioconjug Chem 18:1824–1830PubMedCrossRefGoogle Scholar
  10. 10.
    Fontana A, Spolaore B, Mero A, Veronese FM (2008) Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv Drug Deliv Rev 60:13–28PubMedCrossRefGoogle Scholar
  11. 11.
    Veronese FM (2009) PEGylated protein drugs: basic science and clinical applications. Birkhäuser Verlag, BaselCrossRefGoogle Scholar
  12. 12.
    Harris JM, Chess RB (2003) Effect of PEGylation on pharmaceuticals. Nat Rev Drug Discov 2:214–221PubMedCrossRefGoogle Scholar
  13. 13.
    Fee CJ, Van Alstine JM (2004) Prediction of the viscosity radius and the size exclusion chromatography behavior of PEGylated proteins. Bioconjug Chem 15:1304–1313PubMedCrossRefGoogle Scholar
  14. 14.
    Harris JM (1991) Poly(ethylene glycol) chemistry: biotechnical and biomedical applications. Plenum, New YorkGoogle Scholar
  15. 15.
    Yamaoka T, Tabata Y, Ikada Y (1994) Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sc 83:601–606CrossRefGoogle Scholar
  16. 16.
    Yamaoka T, Tabata Y, Ikada Y (1995) Fate of water-soluble administered via different routes. J Pharm Sci 84:349–354PubMedCrossRefGoogle Scholar
  17. 17.
    Pasut G, Veronese FM (2009 a) PEG conjugates in clinical development or use as anticancer agents: an overview. Adv Drug Deliv Rev 61:1177–1188PubMedCrossRefGoogle Scholar
  18. 18.
    Wang M, Basu A, Palm T, Hua J, Youngster S, Hwang L, Liu HC, Li X, Peng P, Zhang Y, Zhao H, Zhang Z, Longley C, Mehlig M, Borowski V, Sai P, Viswanathan M, Jang E, Petti G, Liu S, Yang K, Filpula D (2006) Engineering an arginine catabolizing bioconjugate: Biochemical and pharmacological characterization of PEGylated derivatives of arginine deiminase from Mycoplasma arthritidis. Bioconjug Chem 17:1447–1459PubMedCrossRefGoogle Scholar
  19. 19.
    Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF (1977) Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem 252:3582–3586PubMedGoogle Scholar
  20. 20.
    Yang Z, Wang J, Lu Q, Xu J, Kobayashi Y, Takakura T, Takimoto A, Yoshioka T, Lian C, Chen C, Zhang D, Zhang Y, Li S, Sun X, Tan Y, Yagi S, Frenkel EP, Hoffman RM (2004) PEGylation confers greatly extended half-life and attenuated immunogenicity to recombinant methioninase in primates. Cancer Res 64:6673–6678PubMedCrossRefGoogle Scholar
  21. 21.
    An Q, Lei Y, Jia N, Zhang X, Bai Y, Yi J, Chen R, Xia A, Yang J, Wei S (2007) Effect of site-directed PEGylation of trichosanthin on its biological activity, immunogenicity, and pharmacokinetics. Biomol Eng 24:643–649PubMedCrossRefGoogle Scholar
  22. 22.
    Walsh S, Shah A, Mond J (2003) Improved pharmacokinetics and reduced antibody reactivity of lysostaphin conjugated to polyethylene glycol. Antimicrob Agents Chemother 47:554–558PubMedCrossRefGoogle Scholar
  23. 23.
    Basu A, Yang K, Wang M, Liu S, Chintala M, Palm T, Zhao H, Peng P, Wu D, Zhang Z, Hua J, Hsieh MC, Zhou J, Petti G, Li X, Janjua A, Mendez M, Liu J, Longley C, Zhang Z, Mehlig M, Borowski V, Viswanathan M, Filpula D (2006) Structure-function engineering of interferon-beta-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjug Chem 17:618–630PubMedCrossRefGoogle Scholar
  24. 24.
    Tsutsumi Y, Kihira T, Tsunoda S, Okada N, Kaneda Y, Ohsugi Y, Miyake M, Nakagawa S, Mayumi T (1995) Polyethylene glycol modification of interleukin-6 enhances its thrombopoietic activity. J Control Release 33:447–451CrossRefGoogle Scholar
  25. 25.
    Shibata H, Yoshioka Y, Ikemizu S, Kobayashi K, Yamamoto Y, Mukai Y, Okamoto T, Taniai M, Kawamura M, Abe Y, Nakagawa S, Hayakawa T, Nagata S, Yamagata Y, Mayumi T, Kamada H, Tsutsumi Y (2004) Functionalization of tumor necrosis factor-alpha using phage display technique and PEGylation improves its antitumor therapeutic window. Clin Cancer Res 10:8293–8300PubMedCrossRefGoogle Scholar
  26. 26.
    Youn YS, Jung JY, Oh SH, Yoo SD, Lee KC (2006) Improved intestinal delivery of salmon calcitonin by Lys18-amine specific PEGylation: stability, permeability, pharmacokinetic behavior and in vivo hypocalcemic efficacy. J Control Release 114:334–342PubMedCrossRefGoogle Scholar
  27. 27.
    Cox GN, Rosendhal MS, Chlipala EA, Smith DJ, Carlson SJ, Doherty DHA (2001) Lond-acting, mono-PEGylated human growth hormone analog is a potent stimulator of weight gain and bone growth in hypophysectomized rats. Endocrinology 4:1590–1597Google Scholar
  28. 28.
    Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54:459–476PubMedCrossRefGoogle Scholar
  29. 29.
    Wong SS (1991) Reactive groups of proteins and their modifying agents. In: Wong SS (ed) Chemistry of protein conjugation and cross-linking. CRC, BostonGoogle Scholar
  30. 30.
    Saito G, Swanson JA, Lee K (2003) Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug Deliv Rev 55:199–215PubMedCrossRefGoogle Scholar
  31. 31.
    Baudys M, Uchio T, Mix D, Wilson D, Kim SW (1995) Physical stabilization of insulin by glycosylation. J Pharm Sci 84:28–33PubMedCrossRefGoogle Scholar
  32. 32.
    Esposito P, Barbero L, Caccia P, Caliceti P, D’Antonio M, Piquet G, Veronese FM (2003) PEGylation of growth-releasing hormone (GRF) analogues. Adv Drug Deliv Rev 55:1279–1292PubMedCrossRefGoogle Scholar
  33. 33.
    Piquet G, Gatti M, Barbero L, Traversa S, Caccia P, Esposito P (2002) Set-up of a large laboratory scale chromatographic separation of poly(ethylene glycol) derivatives of the growth hormone-releasing factor 1–29 analogue. J Chromatogr A944:141–148CrossRefGoogle Scholar
  34. 34.
    Monfardini C, Schiavon O, Caliceti P, Morpurgo M, Harris JM, Veronese FM (1995) A branched monomethoxypoly(ethylene glycol) for protein modification. Bioconjug Chem 6:62–69PubMedCrossRefGoogle Scholar
  35. 35.
    Balan S, Choi J-W, Godwin A, Teo I, Laborde CM, Heidelberger S, Zloh M, Shaunak S, Brocchini S (2007) Site-specific PEGylation of protein disulfide bonds using a three-carbon bridge. Bioconjug Chem 18:61–76PubMedCrossRefGoogle Scholar
  36. 36.
    Choi J-W, Godwin A, Balan S, Bryant P, Cong Y, Pawlisz E, Porssa M, Rumpf N, Singh R, Powell K, Brocchini S (2009) Rebridging disulphides: site-specific PEGylation by sequential bis-alkylation. In: Veronese FM (ed) PEGylated protein drugs: basic science and clinical applications. Birkhäuser Verlag, BaselGoogle Scholar
  37. 37.
    Sato H (2002) Enzymatic procedure for site-specific pegylation of proteins. Adv Drug Deliv Rev 54:487–504PubMedCrossRefGoogle Scholar
  38. 38.
    DeFrees S, Wang Z, Xing R, Scott AE, Wang J, Zopf D, Gouty DL, Sjoberg ER, Panneerselvam K, Brinkman-Van der Linden ECM, Bayer AR, Tarp MA, Clausen H (2006) GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli. Glycobiology 16:833–843PubMedCrossRefGoogle Scholar
  39. 39.
    Cox G (1999) Derivative of growth hormone and related proteins. Bolder Biotechnology Inc. WO9903887Google Scholar
  40. 40.
    Goffin V, Bernichtein S, Carriere O, Bennett WF, Kopchick JJ, Kelly PA (1999) The human growth hormone antagonist B2036 does not interact with the prolactine receptor. Endocrinology 140:3853–3856PubMedCrossRefGoogle Scholar
  41. 41.
    Wolfson W (2006) Amber codon flashing ambrx augments proteins with unnatural amino acids. Chem Biol 13:1011–1012PubMedCrossRefGoogle Scholar
  42. 42.
    Levy Y, Hershfield MS, Fernandez-Mejia C, Polmar SH, Scrudiery D, Berger M, Soresen RU (1988) Adenosine deiminase deficiency with late onset or recurrent infections: response to treatment with polyethylene glycol modified adenosine deiminase. J Pediatr 113:312–317PubMedCrossRefGoogle Scholar
  43. 43.
    Wylie DC, Voloch M, Lee S, Liu YH, Cannon-Carlson S, Cutler C, Pramanik B (2001) Carboxyalkylated histidine is a pH-dependent product of pegylation with SC-PEG. Pharm Res 18:1354–1360PubMedCrossRefGoogle Scholar
  44. 44.
    Pasut G (2009) PEGylated α Interferons: two different strategies to achieve increased efficacy. In: Veronese FM (ed) PEGylated protein drugs: basic science and clinical applications. Birkhäuser Verlag, BaselGoogle Scholar
  45. 45.
    Escudero A, Rodriguez F, Serra MA, Del Olmo JA, Montes F, Rodrigo JM (2008) Pegylated alpha-interferon-2a plus ribavarin compared with pegylated alpha-interferon-2b plus ribavarin for initial treatment of chronic hepatitis C virus: prospective, non-randomized study. J Gastroenterol Hepatol 23:861–866PubMedCrossRefGoogle Scholar
  46. 46.
    Weiland O (1999) Treatment of naive patients with chronic hepatitis C. J Hepatol 31(Suppl 1): 168–173PubMedCrossRefGoogle Scholar
  47. 47.
    Monkarsh SP, Ma Y, Aglione A, Nailon P, Ciolek D, DeBarbieri B, Graves MC, Hollfelder K, Michel H, Palleroni A, Porter JE, Russoman E, Roy S, Pan YC (1997) Positional isomers of monopegylated interferon alpha-2a: isolation, characterization, and biological activity. Anal Biochem 247:434–440PubMedCrossRefGoogle Scholar
  48. 48.
    Reddy KR, Modi MW, Pedder S (2002) Use of peginterferon α2a (40KD) (Pegasys®) for the treatment of hepatitis C. Adv Drug Deliv Rev 54:571–586CrossRefGoogle Scholar
  49. 49.
    Kinstler OB, Brems DN, Lauren SL, Paige AG, Hamburger JB, Treuheit MJ (1995) Characterization and stability of N-terminally pegylated rhG-CSF. Pharm Res 13:996–1002CrossRefGoogle Scholar
  50. 50.
    Manjula BN, Tsai A, Upadhya R, Perumalsamy K, Smith PK, Malavalli A, Vandegriff K, Winslow RM, Intaglietta M, Prabhakaran M, Friedman JM, Acharya AS (2003) Site-specific PEGylation of hemoglobin at Cys-93(β): correlation between the colligative properties of the PEGylated protein and the length of the conjugated PEG chain. Bioconjug Chem 14:464–472PubMedCrossRefGoogle Scholar
  51. 51.
    Acharya AS, Manjula BN, Smith PK (1996) Hemoglobin crosslinkers. Einstein College of Medicine, University of Yeshiva, NY: US5585484Google Scholar
  52. 52.
    Nesbitt AM, Stephens S, Chartash EK (2009) Certolizumab pegol: a PEGylated anti-tumour necrosis factor alpha biological agent. In: Veronese FM (ed) PEGylated protein drugs: basic science and clinical applications. Birkhäuser Verlag, BaselGoogle Scholar
  53. 53.
    Weir N, Athwal D, Brown D, Foulkes R, Kollias G, Nesbitt AM, Popplewell A, Spitali M, Stephens S (2006) A new generation of high-affinity humanized PEGylated Fab’ fragment anti-tumor necrosis factor-α monoclonal antibodies. Therapy 3:535–545Google Scholar
  54. 54.
    Nesbitt AM, Fossati G, Bergin M, Stephens P, Stephens S, Foulkes R, Brown D, Robinson M, Bourne T (2007) Mechanism of action of certolizumab pegol (CDP870): in vitro comparison with other anti-tumour necrosis factor alpha agents. Inflamm Bowel Dis 13:1323–1332PubMedCrossRefGoogle Scholar
  55. 55.
    Ruckman J, Green LS, Beeson J, Waugh S, Gillette WL, Henninger DD, Claesson-Welsh L, Janjić N (1998) 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exan 7-encoded domain. J Biol Chem 273:20556–20567PubMedCrossRefGoogle Scholar
  56. 56.
    Trucker CE, Chen LS, Judkins MB, Farmer JA, Gill SC, Drolet DW (1999) Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys. J Chromatogr B Biomed Sci Appl 732:203–212CrossRefGoogle Scholar
  57. 57.
    Greenwald RB, Choe YH, McGuire J, Conover CD (2003) Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliv Rev 55:217–250PubMedCrossRefGoogle Scholar
  58. 58.
    Pasut G, Veronese FM (2009) Pegylation for improving the effectiveness of therapeutic biomolecules. Drugs Today 45:687–695PubMedCrossRefGoogle Scholar
  59. 59.
    Tanaka H, Satake-Ishikawa R, Ishikawa M, Matsuki S, Asano K (1991) Pharmacokinetics of recombinant human granulocyte colony-stimulating factor conjugated to polyethylene glycol in rats. Cancer Res 51:3710–3714PubMedGoogle Scholar

Copyright information

© Controlled Release Society 2012

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesUniversity of PaduaPadovaItaly

Personalised recommendations