Skip to main content

Liposomes as Carriers for Controlled Drug Delivery

  • Chapter
  • First Online:
Long Acting Injections and Implants

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Important recent technological developments in liposome research for parenteral drug delivery are discussed. The chapter is divided into two major sections. The first section provides an overview of liposome physicochemical properties and the mechanism of vesicle formation. Various liposome preparation methods are reviewed, including film hydration method, organic solvent injection method, and reverse phase evaporation. Then several drug encapsulation/loading techniques are discussed. In the second part, the use of liposomes for parenteral drug delivery is discussed with specific examples of marketed products as well as those that are currently under investigation. In particular, the in vivo fate of drug containing liposomes and several successful examples of formulation approaches to alter the drug/liposome in vivo disposition are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DMPC:

Dimyristoyl-phosphatidylcholine

DMPG:

Dqqqimyristoyl-phosphatidylglycerol

DOPE:

Dioleoyl-phosphatidylethanolamine

DPPC:

Dipalmitoyl-phosphatidylcholine

DSPC:

Distearoyl-phosphatidylcholine

DSPG:

Distearyl phosphatidylglycerol

GV:

Giant vesicles

LUV:

Large unilamellar vesicles

MLV:

Multilamellar vesicles

MPS:

Mononuclear phagocyte system

MVV:

Multivesicular vesicles

RES:

Reticuloendothelial system

REV:

Reverse-phase evaporation vesicles

SUV:

Small unilamellar vesicles

References

  1. Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the ­lamellae of swollen phospholipids. J Mol Biol 13(1):238–252

    Article  PubMed  CAS  Google Scholar 

  2. Papahadjopoulos D, Bangham AD (1966) Biophysical properties of phospholipids. II. Permeability of phosphatidylserine liquid crystals to univalent ions. Biochimica et Biophysica Acta 126(1):185–188

    Article  PubMed  CAS  Google Scholar 

  3. Singer S, Nicolson G (1972) The fluid mosaic model of the structure of cell membranes. Science 175(23):720–731

    Article  PubMed  CAS  Google Scholar 

  4. Gregoriadis G (1976) The carrier potential of liposomes in biology and medicine (first of two parts). N Engl J Med 295(13):704–710

    Article  PubMed  CAS  Google Scholar 

  5. Gregoriadis G (1976) The carrier potential of liposomes in biology and medicine (second of two parts). N Engl J Med 295(14):765–770

    Article  PubMed  CAS  Google Scholar 

  6. Gregoriadis G, Wills EJ, Swain CP, Tavill AS (1974) Drug-carrier potential of liposomes in cancer chemotherapy. Lancet 1(7870):1313–1316. doi:S0140-6736(74)90682-5 [pii]

    Google Scholar 

  7. Papahadjopoulos D, New York Academy of Sciences (1978) Liposomes and their uses in ­biology and medicine. Ann New York Acad Sci 308. New York Academy of Sciences, New York

    Google Scholar 

  8. Lullmann H, Wehling M (1979) The binding of drugs to different polar lipids in vitro. Biochem Pharmacol 28(23):3409–3415

    Article  PubMed  CAS  Google Scholar 

  9. Tremblay C, Barza M, Fiore C, Szoka F (1984) Efficacy of liposome-intercalated amphotericin B in the treatment of systemic candidiasis in mice. Antimicrob Agents Chemother 26(2):170–173. doi:10.1128/aac

    PubMed  CAS  Google Scholar 

  10. Willis MC, Collins B, Zhang T, Green LS, Sebesta DP, Bell C, Kellogg E, Gill SC, Magallanez A, Knauer S, Bendele RA, Gill PS, Janjic N (1998) Liposome-anchored vascular endothelial growth factor aptamerss. Bioconjugate Chem 9(5):573–582. doi:10.1021/bc980002x

    Article  CAS  Google Scholar 

  11. Torchilin VP, Rammohan R, Weissig V, Levchenko TS (2001) TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the ­presence of metabolic inhibitors. Proc Natl Acad Sci USA 98(15):8786–8791. doi:10.1073/pnas.151247498

    Article  PubMed  CAS  Google Scholar 

  12. Huwyler J, Wu D, Pardridge W (1996) Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci USA 93(24):14164–14169

    Article  PubMed  CAS  Google Scholar 

  13. Gregoriadis G, Ryman B (1972) Fate of protein-containing liposomes injected into rats. An approach to the treatment of storage diseases. Eur J Biochem/FEBS 24(3):485

    Article  CAS  Google Scholar 

  14. Szoka F, Papahadjopoulos D (1978) Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci USA 75(9):4194–4198

    Article  PubMed  CAS  Google Scholar 

  15. Lasic DD, Barenholz Y (1996) An overview of liposome scaled-up production and quality Control. In: Handbook of nonmedical applications of liposomes: from design to microreactors. p 23

    Google Scholar 

  16. Mayer L, Hope M, Cullis P (1986) Vesicles of variable sizes produced by a rapid extrusion procedure. Biochimica et Biophysica Acta (BBA)-Biomembr 858(1):161–168

    Article  CAS  Google Scholar 

  17. Mayer L, Bally M, Hope M, Cullis P (1986) Techniques for encapsulating bioactive agents into liposomes. Chem Phys Lipids 40(2–4):333–345

    Article  PubMed  CAS  Google Scholar 

  18. Van Winden ECA, Zuidam NJ, Crommelin DJA (1998) Strategies for large scale production and optimized stability of pharmaceutical liposomes developed for parenteral use. In: Lasic DD, Papahadjopoulos D (eds) Medical application of liposomes. Elsevier Science, Amsterdam, pp 567–604

    Google Scholar 

  19. Bellocchio S, Gaziano R, Bozza S, Rossi G, Montagnoli C, Perruccio K, Calvitti M, Pitzurra L, Romani L (2005) Liposomal amphotericin B activates antifungal resistance with reduced toxicity by diverting Toll-like receptor signalling from TLR-2 to TLR-4. J Antimicrob Chemother 55(2):214–222. doi:dkh542 [pii] 10.1093/jac/dkh542

    Google Scholar 

  20. Hillery A (1997) Supramolecular lipidic drug delivery systems: From laboratory to clinic – A review of the recently introduced commercial liposomal and lipid-based formulations of Amphotericin B. Adv Drug Deliv Rev 24(2–3):345–363

    Article  CAS  Google Scholar 

  21. Lasic DD, Frederik PM, Stuart MCA, Barenholz Y, McIntosh T (1992) Gelation of liposome interior A novel method for drug encapsulation. FEBS Lett 312(2–3):255–258

    Article  PubMed  CAS  Google Scholar 

  22. Maurer N, Fenske D, Cullis P (2001) Developments in liposomal drug delivery systems. Expert Opin Biol Ther 1(6):923–947

    Article  PubMed  CAS  Google Scholar 

  23. Gregoriadis G (1995) Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol 13(12):527–537

    Article  PubMed  CAS  Google Scholar 

  24. Ojewole E, Mackraj I, Naidoo P, Govender T (2008) Exploring the use of novel drug delivery systems for antiretroviral drugs. Eur J Pharm Biopharm 70(3):697–710

    Article  PubMed  CAS  Google Scholar 

  25. Katragadda A, Singh M, Betageri G (1999) Encapsulation, stability, and in vitro release characteristics of liposomal formulations of stavudine (D4T). Drug Deliv 6(1):31–37

    Article  CAS  Google Scholar 

  26. Gene Therapy Clinical Trials Worldwide (2009) Wiley, New York http://www.wiley.co.uk/genmed/clinical/

  27. Barani H, Montazer M (2008) A review on applications of liposomes in textile processing. J Liposome Res 18(3):249–262

    Article  PubMed  CAS  Google Scholar 

  28. Vamvakaki V, Chaniotakis N (2007) Pesticide detection with a liposome-based nano-­biosensor. Biosens Bioelectron 22(12):2848–2853

    Article  PubMed  CAS  Google Scholar 

  29. Torchilin V (1996) Liposomes as delivery agents for medical imaging. Mol Med Today 2(6):242–249

    Article  PubMed  CAS  Google Scholar 

  30. Lasic DD, Papahadjopoulos D (1998) Medical applications of liposomes. Medical applications of liposomes. Elsevier Science, New York

    Google Scholar 

  31. Jeffrey G (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  32. Smith J, Cappa C, Wilson K, Messer B, Cohen R, Saykally R (2004) Energetics of hydrogen bond network rearrangements in liquid water. Science 306(5697):851

    Article  PubMed  CAS  Google Scholar 

  33. Larsson K (2000) Aqueous dispersions of cubic lipid-water phases. Curr Opin Colloid Interface Sci 5(1–2):64–69

    Article  CAS  Google Scholar 

  34. Stoeckenius W (1962) Some electron microscopical observations on liquid-crystalline phases in lipid-water systems. J Cell Biol 12(2):221

    Article  PubMed  CAS  Google Scholar 

  35. Tanford C (1979) Interfacial free energy and the hydrophobic effect. Proc Natl Acad Sci USA 76(9):4175

    Article  PubMed  CAS  Google Scholar 

  36. Gaber M, Hong K, Huang S, Papahadjopoulos D (1995) Thermosensitive sterically stabilized liposomes – formulation and in-vitro studies on mechanism of doxorubicin release by bovine serum and human plasma. Pharm Res 12(10):1407–1416

    Article  PubMed  CAS  Google Scholar 

  37. Klibanov A, Maruyama K, Torchilin V, Huang L (1990) Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 268(1):235–237

    Article  PubMed  CAS  Google Scholar 

  38. Lee SC, Lee KE, Kim JJ, Lim SH (2005) The effect of cholesterol in the liposome bilayer on the stabilization of incorporated Retinol. J Liposome Res 15(3–4):157–166. doi:K2R427LM42275477 [pii] 10.1080/08982100500364131

    Google Scholar 

  39. Kirby C, Clarke J, Gregoriadis G (1980) Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem J 186(2):591

    PubMed  CAS  Google Scholar 

  40. Lasic DD, Papahadjopoulos D (1998) General introduction. In: Lasic DD, Papahadjopoulos D (eds) Medical application of liposomes. Elsevier Science, New York

    Google Scholar 

  41. Patil SD, Burgess DJ (2005) Liposomes: design and manufacturing. In: Burgess DJ (ed) Injectable dispersed systems: formulation, processing, and performance. Informa Healthcare, New York, p 249

    Google Scholar 

  42. Sarnad A, Sultana Y, Aqil M (2007) Liposomal drug delivery systems: an update review. Curr Drug Deliv 4(4):297–305

    Article  Google Scholar 

  43. Szoka F Jr, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Ann Rev Biophys Bioeng 9(1):467–508

    Article  CAS  Google Scholar 

  44. Mozafari M (2005) Liposomes: an overview of manufacturing techniques. Cell Mol Biol Lett 10(4):711

    PubMed  CAS  Google Scholar 

  45. Brandl M (2001) Liposomes as drug carriers: a technological approach. Biotechnol Ann Rev 7:59

    Article  CAS  Google Scholar 

  46. Hope M, Bally MB, Mayer L, Janoff A, Cullis P (1986) Generation of multilamellar and unilamellar phospholipid vesicles. Chem Phys Lipids 40:89–107

    Article  Google Scholar 

  47. Kremer J, Esker M, Pathmamanoharan C, Wiersema P (1977) Vesicles of variable diameter prepared by a modified injection method. Biochemistry 16(17):3932

    Article  PubMed  CAS  Google Scholar 

  48. Jahn A, Vreeland WN, Don LD, Laurie E, Locascio A, Gaitan M (2007) Microfluidic directed formation of liposomes of controlled size. Langmuir 23:6289–6293

    Article  PubMed  CAS  Google Scholar 

  49. Garidel P, Lasch J (2006) Mixed vesicles and mixed micelles: formation, thermodynamic stability, and pharmaceutical aspects. Liposome Technol:209

    Google Scholar 

  50. Allen TM, Romans AY, Kercret H, Segrest JP (1980) Detergent removal during membrane reconstitution. Biochimica et Biophysica Acta (BBA) – Biomembranes 601:328–342

    Article  CAS  Google Scholar 

  51. Barnadas-Rodríguez R, Sabés M (2001) Factors involved in the production of liposomes with a high-pressure homogenizer. Int J Pharm 213(1–2):175–186

    Article  PubMed  Google Scholar 

  52. Mayer L, Hope M, Cullis P, Janoff A (1985) Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles. Biochim Biophys Acta 817(1):193–196

    Article  PubMed  CAS  Google Scholar 

  53. Elorza B, Elorza MA, Sainz MC, Chantres JR (1993) Comparison of particle size and encapsulation parameters of three liposomal preparations. J Microencapsul 10(2):237–248

    Article  PubMed  CAS  Google Scholar 

  54. Lasic DD, Ceh B, Stuart MCA, Guo L, Frederik PM, Barenholz Y (1995) Transmembrane gradient driven phase transitions within vesicles: lessons for drug delivery. Biochimica et Biophysica Acta 1239(2):145–156

    Article  PubMed  Google Scholar 

  55. Patel HM, Ryman BE (1976) Oral administration of insulin by encapsulation within liposomes. FEBS Lett 62(1):60–63

    Article  PubMed  CAS  Google Scholar 

  56. Chen H, Torchilin V, Langer R (1996) Lectin-bearing polymerized liposomes as potential oral vaccine carriers. Pharm Res 13(9):1378–1383

    Article  PubMed  CAS  Google Scholar 

  57. Schreier H, Bouwstra J (1994) Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. J Controlled Release 30(1):1–15

    Article  CAS  Google Scholar 

  58. Egbaria K, Weiner N (1990) Liposomes as a topical drug delivery system. Adv Drug Del Rev 5(3):287–300

    Article  CAS  Google Scholar 

  59. Bangham A (1998) Artificial lung expanding compound (ALEC). In: Lasic D, Papahadjopoulos D (eds) Medical applications of liposomes, 1st edn. Elsevier Science, New York, pp 455–472

    Chapter  Google Scholar 

  60. Kellaway IW, Farr SJ (1990) Liposomes as drug delivery systems to the lung. Adv Drug Deliv Rev 5(1–2):149–161

    Article  CAS  Google Scholar 

  61. Gregoriadis G (1988) Fate of injected liposomes: observations on entrapped solute retention, vesicle clearance and tissue distribution in vivo. In: Gregoriadis G (ed) Liposomes as drug carriers: recent trends and progress. Wiley, New York, pp 3–18

    Google Scholar 

  62. Senior J, Gregoriadis G (1982) Stability of small unilamellar liposomes in serum and clearance from the circulation: the effect of the phospholipid and cholesterol components. Life Sci 30(24):2123–2136

    Article  PubMed  CAS  Google Scholar 

  63. Torchilin VP, Omelyanenko VG, Papisov MI, Bogdanov AA Jr, Trubetskoy VS, Herron JN, Gentry CA (1994) Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. Biochimica et Biophysica Acta (BBA) – Biomembranes 1195(1):11–20

    Article  CAS  Google Scholar 

  64. Levchenko TS, Rammohan R, Lukyanov AN, Whiteman KR, Torchilin VP (2002) Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. Int J Pharm 240(1–2):95–102

    Article  PubMed  CAS  Google Scholar 

  65. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Controlled Release 65(1–2):271–284

    Article  CAS  Google Scholar 

  66. Iyer A, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11(17–18):812–818

    Article  PubMed  CAS  Google Scholar 

  67. Allen T, Brandeis E, Hansen C, Kao G, Zalipsky S (1995) A new strategy for attachment of antibodies to sterically stabilized liposomes resulting in efficient targeting to cancer cells. Biochimica et Biophysica Acta (BBA) – Biomembranes 1237(2):99–108

    Article  Google Scholar 

  68. Chua M, Fan S (1984) Attachment of immunoglobulin to liposomal membrane via protein carbohydrate. Biochimica et Biophysica Acta (BBA)-General Subjects 800(3):291–300

    Article  CAS  Google Scholar 

  69. Martin F, Papahadjopoulos D (1982) Irreversible coupling of immunoglobulin fragments to preformed vesicles. An improved method for liposome targeting. J Biol Chem 257(1):286

    PubMed  CAS  Google Scholar 

  70. Ann Clark M, Blair H, Liang L, Brey R, Brayden D, Hirst B (2001) Targeting polymerised liposome vaccine carriers to intestinal M cells. Vaccine 20(1–2):208–217

    Article  CAS  Google Scholar 

  71. Kirpotin D, Park J, Hong K, Zalipsky S, Li W, Carter P, Benz C, Papahadjopoulos D (1997) Sterically Stabilized Anti-HER2 Immunoliposomes: Design and Targeting to Human Breast Cancer Cells in Vitro. Biochemistry 36(1):66–75

    Article  PubMed  CAS  Google Scholar 

  72. Andresen TL, Jensen SS, Jorgensen K (2005) Advanced strategies in liposomal cancer therapy: Problems and prospects of active and tumor specific drug release. Prog Lipid Res 44(1):68–97

    Article  PubMed  CAS  Google Scholar 

  73. Maruyama K, Takizawa T, Yuda T, Kennel SJ, Huang L, Iwatsuru M (1995) Targetability of novel immunoliposomes modified with amphipathic poly(ethylene glycol) s conjugated at their distal terminals to monoclonal antibodies. Biochimica et Biophysica Acta (BBA) – Biomembranes 1234(1):74–80

    Article  Google Scholar 

  74. Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60(15):1615–1626

    Article  PubMed  CAS  Google Scholar 

  75. Park JW, Kirpotin DB, Hong K, Shalaby R, Shao Y, Nielsen UB, Marks JD, Papahadjopoulos D, Benz CC (2001) Tumor targeting using anti-her2 immunoliposomes. J Controlled Release 74(1–3):95–113

    Article  CAS  Google Scholar 

  76. Barenholz Y (2001) Liposome application: problems and prospects. Curr Opin Colloid Interface Sci 6(1):66–77

    Article  CAS  Google Scholar 

  77. Harding JA, Engbers CM, Newman MS, Goldstein NI, Zalipsky S (1997) Immunogenicity and pharmacokinetic attributes of poly(ethylene glycol)-grafted immunoliposomes. Biochimica et Biophysica Acta (BBA) – Biomembranes 1327(2):181–192

    Article  CAS  Google Scholar 

  78. Hill A (1998) The immunogenetics of human infectious diseases. Ann Rev Immunol 16(1):593–617

    Article  CAS  Google Scholar 

  79. Daszak P, Cunningham A, Hyatt A (2000) Emerging infectious diseases of wildlife–threats to biodiversity and human health. Science 287(5452):443

    Article  PubMed  CAS  Google Scholar 

  80. Walsh T, Hiemenz J, Anaissie E (1996) Recent progress and current problems in treatment of invasive fungal infections in neutropenic patients. Infect Dis Clin North Am 10(2):365

    Article  PubMed  CAS  Google Scholar 

  81. Lyman C, Walsh T (1992) Systemically administered antifungal agents. A review of their clinical pharmacology and therapeutic applications. Drugs 44(1):9

    Article  PubMed  CAS  Google Scholar 

  82. Fridkin S, Jarvis W (1996) Epidemiology of nosocomial fungal infections. Clin Microbiol Rev 9(4):499

    PubMed  CAS  Google Scholar 

  83. Trejo W, Bennett R (1963) Streptomyces nodosus sp. n., the amphotericin-producing organism. J Bacteriol 85(2):436

    PubMed  CAS  Google Scholar 

  84. Lasic D (1992) Mixed micelles in drug deliver. Nature 355(6357):279

    Article  PubMed  CAS  Google Scholar 

  85. Kim C, Koike K, Saito I, Miyamura T, Jay G (1991) HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature 351:317–320

    Article  PubMed  CAS  Google Scholar 

  86. Walboomers J, Jacobs M, Manos M, Bosch F, Kummer J, Shah K, Snijders P, Peto J, Meijer C, MuÒoz N (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189(1):12–19

    Article  PubMed  CAS  Google Scholar 

  87. zur Hausen H (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2(5):342–350

    Article  PubMed  CAS  Google Scholar 

  88. Phillips N, Tsoukas C (1992) Liposomal encapsulation of azidothymidine results in decreased hematopoietic toxicity and enhanced activity against murine acquired immunodeficiency syndrome. Blood 79(5):1137

    PubMed  CAS  Google Scholar 

  89. Phillips N, Skamene E, Tsoukas C (1991) Liposomal encapsulation of 3′-azido-3′-deoxythymidine (AZT) results in decreased bone marrow toxicity and enhanced activity against murine AIDS-induced immunosuppression. J Acquir Immune Def Syndr 4(10):959

    CAS  Google Scholar 

  90. Harvie P, DÈsormeaux A, GagnÈ N, Tremblay M, Poulin L, Beauchamp D, Bergeron M (1995) Lymphoid tissues targeting of liposome-encapsulated 2/, 3/-dideoxyinosine. Aids 9(7):701

    Article  PubMed  CAS  Google Scholar 

  91. Makabi-Panzu B, Lessard C, Beauchamp D, DÈsormeaux A, Poulin L, Tremblay M, Bergeron M (1995) Uptake and binding of liposomal 2′, 3′-dideoxycytidine by RAW 264.7 cells: a three-step process. J Acq Immune Def Syndr 8(3):227

    Article  CAS  Google Scholar 

  92. Yao Y, Chen J, Xu Y (2007) Effect of cationic liposome formulation on human carcinoma hepatic SMMC-7721 cells’ uptake of tenofovir and cytotoxicity. China Pharm 18(34):2655–2658

    CAS  Google Scholar 

  93. Lasic D (1996) Stealth liposomes. In: Benita S (ed) Microencapsulation: methods and industrial applications. Marcel Dekker, New York, pp 297–328

    Google Scholar 

  94. Allen T, Hansen C (1991) Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochimica et Biophysica Acta (BBA) – Biomembranes 1068(2):133–141

    Article  CAS  Google Scholar 

  95. Needham D, McIntosh T, Lasic D (1992) Repulsive interactions and mechanical stability of polymer-grafted lipid membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 1108(1):40–48

    Article  CAS  Google Scholar 

  96. Journal of Gene Medicine Clinical Trials Website (2007) http://www.wiley.co.uk/genmed/clinical/

  97. Perrie Y, Gregoriadis G (2000) Liposome-entrapped plasmid DNA: characterisation studies. Biochimica et Biophysica Acta (BBA) – General Subjects 1475(2):125–132

    Article  CAS  Google Scholar 

  98. Chesnoy S, Huang L (2000) Structure and function of lipid-DNA complexes for gene delivery. Annu Rev Biophys Biomol Struct 29:27–47

    Article  PubMed  CAS  Google Scholar 

  99. Bombelli C, Faggioli F, Luciani P, Mancini G, Sacco MG (2005) Efficient transfection of DNA by liposomes formulated with cationic gemini amphiphiles. J Med Chem 48(16):5378–5382

    Article  PubMed  CAS  Google Scholar 

  100. McNeil SE, Perrie Y (2006) Gene delivery using cationic liposomes. Expert Opin Ther Patent 16(10):1371–1382. doi:doi:10.1517/13543776.16.10.1371

    Article  CAS  Google Scholar 

  101. Xu Y, Hui SW, Frederik P, Szoka FC Jr (1999) Physicochemical characterization and purification of cationic lipoplexes. Biophys J 77(1):341–353

    Article  PubMed  CAS  Google Scholar 

  102. Zuhorn IS, Bakowsky U, Polushkin E, Visser WH, Stuart MCA, Engberts JBFN, Hoekstra D (2005) Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency. Mol Ther 11(5):801–810

    Article  PubMed  CAS  Google Scholar 

  103. Ilarduya CTd, Arangoa MA, Duzgunes N (2003) Transferrin-Lipoplexes with Protamine-Condensed DNA for Serum-Resistant Gene Delivery Methods in Enzymology. In., Volume 373 edn. Academic Press, pp 342–356

    Google Scholar 

  104. Brignole C, Marimpietri D, Pagnan G, Paolo DD, Zancolli M, Pistoia V, Ponzoni M, Pastorino F (2005) Neuroblastoma targeting by c-myb-selective antisense oligonucleotides entrapped in anti-GD2 immunoliposome: immune cell-mediated anti-tumor activities. Cancer Lett 228(1–2):181–186

    Article  PubMed  CAS  Google Scholar 

  105. Hattori Y, Suzuki S, Kawakami S, Yamashita F, Hashida M (2005) The role of dioleoylphosphatidylethanolamine (DOPE) in targeted gene delivery with mannosylated cationic liposomes via intravenous route. J Control Release 108(2–3):484–495

    Article  PubMed  CAS  Google Scholar 

  106. Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, Lee KD, Woodle MC, Lasic DD, Redemann C et al (1991) Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 88(24):11460–11464

    Article  PubMed  CAS  Google Scholar 

  107. Palmer LR, Chen T, Lam AM, Fenske DB, Wong KF, MacLachlan I, Cullis PR (2003) Transfection properties of stabilized plasmid-lipid particles containing cationic PEG lipids. Biochim Biophys Acta 1611(1–2):204–216

    PubMed  CAS  Google Scholar 

  108. Hagiwara Y, Arima H, Hirayama F, Uekama K (2006) Prolonged retention of doxorubicin in tumor cells by encapsulation of γ-cyclodextrin complex in pegylated liposomes. J Inclusion Phenom Macrocycl Chem 56(1):65–68

    Article  CAS  Google Scholar 

  109. Yang T, Choi M-K, Cui F-D, Kim JS, Chung S-J, Shim C-K, Kim D-D (2007) Preparation and evaluation of paclitaxel-loaded PEGylated immunoliposome. J Controlled Release 120(3):169–177

    Article  CAS  Google Scholar 

  110. Dalby B, Cates S, Harrisa A, Ohkia E, Tilkinsb M, Priceb P, Ciccaronec V (2004) Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods 33(2):95–103

    Article  PubMed  CAS  Google Scholar 

  111. Patil SD, Rhodes DG, Burgess DJ (2004) Anionic liposomal delivery system for DNA transfection. AAPS J 6(4):e29

    Article  PubMed  Google Scholar 

  112. Patil SD, Rhodes DG, Burgess DJ (2005) Biophysical characterization of anionic lipoplexes. Biochimica et Biophysica Acta – Biomembranes 1711(1):1–11

    Article  CAS  Google Scholar 

  113. Mozafari MR, Reed CJ, Rostron C, Kocum C, Piskin E (2002) Formation and characterisation of non-toxic anionic liposomes for delivery of therapeutic agents to the pulmonary airways. Cell Mol Biol Lett 7(2):243–244

    PubMed  Google Scholar 

  114. Lorenzi GL, Lee KD (2005) Enhanced plasmid DNA delivery using anionic LPDII by listeriolysin O incorporation. J Gene Med 7(8):1077–1085

    Article  PubMed  CAS  Google Scholar 

  115. Lasic DD, Martin FJ (1990) On the mechanism of vesicle formation. J Membr Sci 50(2):215–222

    Article  CAS  Google Scholar 

  116. Lasic DD, Joannic R, Keller BC, Frederik PM, Auvray L (2001) Spontaneous vesiculation. Adv Colloid Interface Sci 89–90:337–349

    Article  PubMed  Google Scholar 

  117. Lasic D (1993) Liposomes: from physics to applications. Elsevier Science Ltd, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane J. Burgess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Controlled Release Society

About this chapter

Cite this chapter

Xu, X., Burgess, D.J. (2012). Liposomes as Carriers for Controlled Drug Delivery. In: Wright, J., Burgess, D. (eds) Long Acting Injections and Implants. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0554-2_11

Download citation

Publish with us

Policies and ethics