Skip to main content

Microsphere Technologies

  • Chapter
  • First Online:
Long Acting Injections and Implants

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

This chapter, divided into three sections, discusses important developments in microsphere technology for parenteral drug delivery. In the first section, microsphere systems are briefly described and polymers including both natural and synthetic polymers used in microsphere technology are reviewed. In the second section, various conventional microsphere fabrication methods as well as recent advances in microsphere preparation methods are discussed. Specific examples of microsphere applications, including microspheres for small molecules, protein therapeutics and vaccines are provided. In the final section, some of the challenges associated with developing microsphere products and means to overcome these challenges are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Polymeric systems for ­controlled drug release. Chem Rev 99(11):3181–3198. doi:10.1021/cr940351u

    Article  PubMed  CAS  Google Scholar 

  2. Jain R, Shah NH, Malick AW, Rhodes CT (1998) Controlled drug delivery by biodegradable poly(ester) devices: different preparative approaches. Drug Dev Ind Pharm 24(8):703–727

    Article  PubMed  CAS  Google Scholar 

  3. Burgess DJ, Davis SS, Tomlinson E (1987) Potential use of albumin microspheres as a drug delivery system.I. Preparation and in vitro release of steroids. Int J Pharm 39(1–2):129–136. doi:10.1016/0378-5173(87)90207-9

    Article  CAS  Google Scholar 

  4. Thakkar H, Sharma RK, Mishra AK, Chuttani K, Murthy RR (2005) Albumin microspheres as carriers for the antiarthritic drug celecoxib. AAPS Pharm Sci Tech 6(1):E65–E73

    Article  Google Scholar 

  5. Panduranga Rao K (1996) Recent developments for collagen-based materials for medical applications and drug delivery systems. J Biomater Sci Polym Ed 7(7):623–645

    Article  Google Scholar 

  6. Nagai N, Kumasaka N, Kawashima T, Kaji H, Nishizawa M, Abe T (2010) Preparation and characterization of collagen microspheres for sustained release of VEGF. J Mater Sci Mater Med 21:1891–1898

    Article  PubMed  CAS  Google Scholar 

  7. Baba S, Matsumoto N, Kaneshita Y, Inami K, Morikuni H, Kawazoe T (2008) Efficacy of bone regeneration using collagen microspheres as scaffold. J Osaka Dent Univ 42(1):9–15

    CAS  Google Scholar 

  8. Dinarvand R, Mahmoodi S, Farboud E, Salehi M, Atyabi F (2005) Preparation of gelatin microspheres containing lactic acid – effect of cross-linking on drug release. Acta Pharm 55:57–67

    PubMed  CAS  Google Scholar 

  9. Ko JA, Park HJ, Hwang SJ, Park JB, Lee JS (2002) Preparation and characterization of ­chitosan microparticles intended for controlled drug delivery. Int J Pharm 249(1–2):165–174. doi:10.1016/s0378-5173(02)00487-8

    Article  PubMed  CAS  Google Scholar 

  10. Dhawan S, Singla AK (2003) Nifedipine loaded chitosan microspheres prepared by emulsification phase-separation. Biotech Histochem 78(5):243–254

    PubMed  CAS  Google Scholar 

  11. Ly L, Ls W (1998) Effect of magnesium stearate on chitosan microspheres prepared by an emulsification-coacervation technique. J Microencapsul 15(3):319–333

    Article  Google Scholar 

  12. He P, Davis SS, Illum L (1999) Chitosan microspheres prepared by spray drying. Int J Pharm 187(1):53–65. doi:10.1016/s0378-5173(99)00125-8

    Article  PubMed  CAS  Google Scholar 

  13. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM (2008) Nano/micro ­technologies for delivering macromolecular therapeutics using poly(d, l-lactide-co-glycolide) and its derivatives. J Controlled Release 125(3):193–209. doi:10.1016/j.jconrel.2007.09.013

    Article  CAS  Google Scholar 

  14. Capan Y, Jiang G, Giovagnoli S, Na K-H, Deluca PP (2003) Preparation and Characterization of Poly(D, L-lactide-co-glycolide) Microspheres for Controlled Release of Human Growth Hormone. AAPS Pharm Sci Tech 4(2)

    Google Scholar 

  15. Wischke C, Schwendeman SP (2008) Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm 364(2):298–327. doi:10.1016/j.ijpharm.2008.04.042

    Article  PubMed  CAS  Google Scholar 

  16. Zhou S, Liao X, Li X, Deng X, Li H (2003) Poly–lactide-co-poly(ethylene glycol) ­microspheres as potential vaccine delivery systems. J Controlled Release 86(2–3):195–205. doi:10.1016/s0168-3659(02)00423-6

    Article  CAS  Google Scholar 

  17. Nojehdehian H, Moztarzadeh F, Baharvand H, Nazarian H, Tahriri M (2009) Preparation and surface characterization of poly-l-lysine-coated PLGA microsphere scaffolds containing ­retinoic acid for nerve tissue engineering: In vitro study. Colloids Surf B: Biointerfaces 73(1):23–29. doi:10.1016/j.colsurfb.2009.04.029

    Article  CAS  Google Scholar 

  18. Zolnik BS, Burgess DJ (2007) Effect of acidic pH on PLGA microsphere degradation and release. J Controlled Release 122(3):338–344. doi:10.1016/j.jconrel.2007.05.034

    Article  CAS  Google Scholar 

  19. Zolnik BS, Leary PE, Burgess DJ (2006) Elevated temperature accelerated release testing of PLGA microspheres. J Controlled Release 112(3):293–300. doi:10.1016/j.jconrel.2006.02.015

    Article  CAS  Google Scholar 

  20. Domb AJ, Langer R (1987) Polyanhydrides. I. Preparation of high molecular weight polyanhydrides. J Polym Sci Part A: Polym Chem 25(12):3373–3386

    Article  CAS  Google Scholar 

  21. Tamada J, Langer R (1992) The development of polyanhydrides for drug delivery ­applications. J Biomater Sci Polym Ed 3(4):315–353

    Article  PubMed  CAS  Google Scholar 

  22. Manoj M, Xiaodong X, DA J (1990) Polyanhydrides. V. Branched polyanhydrides. Biomaterials 11(9):690–694

    Article  Google Scholar 

  23. Gˆpferich A, Tessmar J (2002) Polyanhydride degradation and erosion. Adv Drug Deliv Rev 54(7):911–931. doi:10.1016/s0169-409x(02)00051-0

    Article  Google Scholar 

  24. Berkland C, Kipper MJ, Narasimhan B, Kim K, Pack DW (2004) Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres. J Controlled Release 94(1):129–141. doi:10.1016/j.jconrel.2003.09.011

    Article  CAS  Google Scholar 

  25. Park E-S, Maniar M, Shah J (1996) Water uptake in to polyanhydride devices: kinetics of uptake and effects of model compounds incorporated, and device geometry on water uptake. J Controlled Release 40(1–2):55–65. doi:10.1016/0168-3659(95)00143-3

    Article  CAS  Google Scholar 

  26. Lazko J, Popineau Y, Legrand J (2004) Soy glycinin microcapsules by simple coacervation method. Colloids Surf B: Biointerfaces 37(1–2):1–8. doi:10.1016/j.colsurfb.2004.06.004

    Article  CAS  Google Scholar 

  27. Wei G, Knoch A, Laicher A, Stanislaus F, Daniels R (1995) Simple coacervation of hydroxypropyl methylcellulose phthalate (HPMCP) II. Microencapsulation of ibuprofen. Int J Pharm 124(1):97–105. doi:10.1016/0378-5173(95)00085-w

    Article  Google Scholar 

  28. Wei G, Knoch A, Laicher A, Stanislaus F, Daniels R (1995) Simple coacervation of hydroxypropyl methylcellulose phthalate (HPMCP) I. Temperature and pH dependency of coacervate formation. Int J Pharm 124(1):87–96. doi:10.1016/0378-5173(95)00084-v

    Article  Google Scholar 

  29. Bachtsi AR, Kiparissides C (1996) Synthesis and release studies of oil-containing poly(vinyl alcohol) microcapsules prepared by coacervation. J Controlled Release 38(1):49–58. doi:10.1016/0168-3659(95)00099-2

    Article  CAS  Google Scholar 

  30. Nihant N, Grandfils C, JÈrÙme R, TeyssiÈ P (1995) Microencapsulation by coacervation of poly(lactide-co-glycolide) IV. Effect of the processing parameters on coacervation and ­encapsulation. J Controlled Release 35(2–3):117–125. doi:10.1016/0168-3659(95)00026-5

    Article  CAS  Google Scholar 

  31. Singh ON, Burgess DJ (1989) Characterization of albumin-alginic acid complex coacervation. J Pharm Pharmacol 41(10):670–673

    Article  PubMed  CAS  Google Scholar 

  32. Burgess DJ, Carless JE (1984) Microelectrophoretic studies of gelatin and acacia for the ­predic-tion of complex coacervation. J Colloid Int Sci 98(1):1–8. doi:10.1016/0021-9797(84)90472-7

    CAS  Google Scholar 

  33. Rattes ALR, Oliveira WP (2007) Spray drying conditions and encapsulating composition effects on formation and properties of sodium diclofenac microparticles. Powder Technol 171:7–14

    Article  CAS  Google Scholar 

  34. Ponsart S, Burgess DJ (1996) Microencapsulation of [beta]-glucuronidase by spray-drying. Eur J Pharm Sci 4(Supplement 1):S76–S76

    Article  Google Scholar 

  35. Li W-I, Anderson KW, Deluca PP (1995) Kinetic and thermodynamic modeling of the formation of polymeric microspheres using solvent extraction/evaporation method. J Controlled Release 37(3):187–198. doi:10.1016/0168-3659(95)00077-1

    Article  CAS  Google Scholar 

  36. Freitas S, Merkle HP, Gander B (2005) Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J Controlled Release 102(2):313–332. doi:10.1016/j.jconrel.2004.10.015

    Article  CAS  Google Scholar 

  37. Li M, Rouaud O, Poncelet D (2008) Microencapsulation by solvent evaporation: State of the art for process engineering approaches. Int J Pharmaceutics 363(1–2):26–39. doi:10.1016/j.ijpharm.2008.07.018

    Article  CAS  Google Scholar 

  38. Rawat A, Burgess DJ (2010) Effect of ethanol as a processing co-solvent on the PLGA microsphere characteristics. Int J Pharm 394(1–2):99–105. doi:10.1016/j.ijpharm.2010.05.013

    Article  PubMed  CAS  Google Scholar 

  39. Yuan Y, Chesnutt BM, Utturkar G, Haggard WO, Yang Y, Ong JL, Bumgardner JD (2007) The effect of cross-linking of chitosan microspheres with genipin on protein release. Carbohydr Polym 68(3):561–567. doi:10.1016/j.carbpol.2006.10.023

    Article  CAS  Google Scholar 

  40. Saleh AM, El-Khordagui LK, Robb DA, Florence AT (1989) Effect of some drugs and additives on the cross-linking of bovine serum albumin by glutaraldehyde. Int J Pharm 57(3):205–210. doi:10.1016/0378-5173(89)90208-1

    Article  CAS  Google Scholar 

  41. Chen X, Chen Z, Lu G, Bu W, Yang B (2003) Measuring the swelling behavior of polymer microspheres with different cross-linking densities and the medium-dependent color changes of the resulting latex crystal films. J Colloid Interface Sci 264(1):266–270. doi:10.1016/s0021-9797(03)00485-5

    Article  PubMed  CAS  Google Scholar 

  42. Lim F, Sun A (1980) Microencapsulated islets as bioartifical endocrine pancreas. Science 210(4472):908–910

    Article  PubMed  CAS  Google Scholar 

  43. Alexandridou S, Kiparissides C, Mange F, Foissy A (2001) Surface characterization of oil-containing polyterephthalamide microcapsules prepared by interfacial polymerization. J Microencapsul 18(6):767–781

    Article  PubMed  CAS  Google Scholar 

  44. Lee TH, Wang J, Wang C-H (2002) Double-walled microspheres for the sustained release of a highly water soluble drug: characterization and irradiation studies. J Controlled Release 83(3):437–452. doi:10.1016/s0168-3659(02)00235-3

    Article  CAS  Google Scholar 

  45. Mathiowitz E, Langer RS (1989) Preparation of multiwall polymeric microcapsules. USA Patent

    Google Scholar 

  46. Rahman NA, Mathiowitz E (2004) Localization of bovine serum albumin in double-walled microspheres. J Controlled Release 94(1):163–175

    Article  CAS  Google Scholar 

  47. Pekarek K, Jacob J, Mathlowitz E (1994) Double-walled polymer microspheres for controlled drug release. Nature 367(6460):258–260

    Article  PubMed  CAS  Google Scholar 

  48. Yang Y-Y, Shi M, Goh S-H, Moochhala SM, Ng S, Heller J (2003) POE/PLGA composite microspheres: formation and in vitro behavior of double walled microspheres. J Controlled Release 88(2):201–213. doi:10.1016/s0168-3659(02)00491-1

    Article  Google Scholar 

  49. Reinhold SE (2009) Self-healing polymers microcapsulate biomacromolecules without organic solvents. The University of Michigan

    Google Scholar 

  50. Yeo Y, Chen AU, Basaran OA, Park K (2004) Solvent exchange method: a novel microencapsulation technique using dual microdispensers. Pharm Res 21(8):1419–1427. doi:10.1023/B:PHAM.0000036916.96307.d8

    Article  PubMed  CAS  Google Scholar 

  51. Xu Q, Hashimoto M, Dang TT, Hoare T, Kohane DS, Whitesides GM, Langer R, Anderson DG (2009) Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small 5(13):1575–1581. doi:10.1002/smll.200801855

    Article  PubMed  CAS  Google Scholar 

  52. Porta GD, Adami R, Del Gaudio P, Prota L, Aquino R (2010) Reverchon E Albumin/gentamicin microspheres produced by supercritical assisted atomization: Optimization of size, drug loading and release. J Pharm Sci 99(11):4720–4729. doi:10.1002/jps.22173

    Article  PubMed  Google Scholar 

  53. Blanco-PrÌeto MJ, Lecaroz C, Renedo MJ, Kunkova J, Gamazo C (2002) In vitro evaluation of gentamicin released from microparticles. Int J Pharm 242(1–2):203–206. doi:10.1016/s0378-5173(02)00158-8

    Article  PubMed  Google Scholar 

  54. Kohane DS, Smith SE, Louis DN, Colombo G, Ghoroghchian P, Hunfeld NGM, Berde CB, Langer R (2003) Prolonged duration local anesthesia from tetrodotoxin-enhanced local anesthetic microspheres. Pain 104(1–2):415–421. doi:10.1016/s0304-3959(03)00049-6

    Article  PubMed  CAS  Google Scholar 

  55. Wang C, Adrianus GN, Sheng N, Toh S, Gong Y, Wang D-A (2009) In vitro performance of an injectable hydrogel/microsphere based immunocyte delivery system for localised anti-tumour activity. Biomaterials 30(36):6986–6995. doi:10.1016/j.biomaterials.2009.09.006

    Article  PubMed  CAS  Google Scholar 

  56. Hickey T, Kreutzer D, Burgess DJ, Moussy F (2002) Dexamethasone/PLGA microspheres for continuous delivery of an anti-inflammatory drug for implantable medical devices. Biomaterials 23(7):1649–1656. doi:10.1016/s0142-9612(01)00291-5

    Article  PubMed  CAS  Google Scholar 

  57. Burgess DJ, Davis SS (1988) Potential use of albumin microspheres as a drug delivery system: II. In vivo deposition and release of steroids. Int J Pharm 46(1–2):69–76. doi:10.1016/0378-5173(88)90011-7

    Article  CAS  Google Scholar 

  58. Liggins RT, Cruz T, Min W, Liang L, Hunter WL, Burt HM (2004) Intra-articular treatment of arthritis with microsphere formulations of paclitaxel biocompatibility and efficacy determinations in rabbits. Inflam Res 53(8):363–372

    Article  CAS  Google Scholar 

  59. Pandey R, Khuller G (2004) Chemotherapeutic potential of alginate-chitosan microspheresas anti-tubercular drug carriers. J Antimicrob Chemother 53(4):635–640

    Article  PubMed  CAS  Google Scholar 

  60. Lee KY, Yuk SH (2007) Polymeric protein delivery systems. Prog Polym Sci 32(7):669–697. doi:10.1016/j.progpolymsci.2007.04.001

    Article  CAS  Google Scholar 

  61. Organization WH (2011) World Health Organization

    Google Scholar 

  62. Hinds KD, Campbell KM, Holland KM, Lewis DH, PichÈ CA, Schmidt PG (2005) PEGylated insulin in PLGA microparticles. In vivo and in vitro analysis. J Controlled Release 104(3):447–460

    Article  CAS  Google Scholar 

  63. Lee J, Tan CY, Lee S-K, Kim Y-H, Lee KY (2009) Controlled delivery of heat shock protein using an injectable microsphere/hydrogel combination system for the treatment of myocardial infarction. J Controlled Release 137(3):196–202

    Article  CAS  Google Scholar 

  64. Fujii T, Yonemitsu Y, Onimaru M, Inoue M, Hasegawa M, Kuwano H, Sueishi K (2008) VEGF function for upregulation of endogenous PlGF expression during FGF-2-mediated therapeutic angiogenesis. Atherosclerosis 200(1):51–57. doi:10.1016/j.atherosclerosis.2007.12.012

    Article  PubMed  CAS  Google Scholar 

  65. Kim T, Burgess DJ (2002) Pharmacokinetic characterization of 14C-vascular endothelial growth factor controlled release microspheres using a rat model. J Pharm Pharmacol 54(7):897–905

    Article  PubMed  CAS  Google Scholar 

  66. Patil SD, Papadmitrakopoulos F, Burgess DJ (2007) Concurrent delivery of dexamethasone and VEGF for localized inflammation control and angiogenesis. J Controlled Release 117(1):68–79. doi:10.1016/j.jconrel.2006.10.013

    Article  CAS  Google Scholar 

  67. Jiang W, Gupta RK, Deshpande MC, Schwendeman SP (2005) Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv Drug Deliv Rev 57(3):391–410. doi:10.1016/j.addr.2004.09.003

    Article  PubMed  CAS  Google Scholar 

  68. Eldridge JH, Staas JK, Meulbroek JA, McGhee JR, Tice TR, Gilley RM (1991) Biodegradable microspheres as a vaccine delivery system. Mol Immunol 28(3):287–294. doi:10.1016/0161-5890(91)90076-v

    Article  PubMed  CAS  Google Scholar 

  69. Lee HK, Park JH, Kwon KC (1997) Double-walled microparticles for single shot vaccine. J Controlled Release 44(2–3):283–293. doi:10.1016/s0168-3659(96)01534-9

    CAS  Google Scholar 

  70. Jang J-H, Shea LD (2006) Intramuscular delivery of DNA releasing microspheres: Microsphere properties and transgene expression. J Controlled Release 112(1):120–128

    Article  CAS  Google Scholar 

  71. Wang D, Robinson DR, Kwon GS, Samuel J (1999) Encapsulation of plasmid DNA in biodegradable poly(,-lactic-co-glycolic acid) microspheres as a novel approach for immunogene delivery. J Controlled Release 57(1):9–18. doi:10.1016/s0168-3659(98)00099-6

    Article  CAS  Google Scholar 

  72. Castellanos IJ, Cruz G, Crespo R, Griebenow K (2002) Encapsulation-induced aggregation and loss in activity of [gamma]-chymotrypsin and their prevention. J Controlled Release 81(3):307–319. doi:10.1016/s0168-3659(02)00073-1

    Article  CAS  Google Scholar 

  73. Sah H (1999) Protein behavior at the water/methylene chloride interface. J Pharm Sci 88(2):1320–1325

    Article  PubMed  CAS  Google Scholar 

  74. Maa Y-F, Hsu CC (1997) Protein denaturation by combined effect of shear and air-liquid interface. Biotechnol Bioeng 54(6):503–512

    Article  PubMed  CAS  Google Scholar 

  75. Oliva A, SantoveÒa A, FariÒa J, LlabrÈs M (2003) Effect of high shear rate on stability of proteins: kinetic study. J Pharm Biomed Anal 33(2):145–155. doi:10.1016/s0731-7085(03)00223-1

    Article  PubMed  CAS  Google Scholar 

  76. Sah H, Bahl Y (2005) Effects of aqueous phase composition upon protein destabilization at water/organic solvent interface. J Controlled Release 106(1–2):51–61. doi:10.1016/j.jconrel.2005.04.020

    Article  CAS  Google Scholar 

  77. Liu WR, Lanter R, Klibanov AM (1991) Moisture-induced aggregation of lyophilized proteins in the solid state. Biotechnol Bioeng 37(2):177–184

    Article  PubMed  CAS  Google Scholar 

  78. Arakawa T, Timasheff SN (1982) Stabilization of protein structure by sugars. Biochemistry 21(25):6536–6544

    Article  PubMed  CAS  Google Scholar 

  79. Cho M, Sah H (2005) Formulation and process parameters affecting protein encapsulation into PLGA microspheres during ethyl acetate-based microencapsulation process. J Microencapsul 22:1

    Article  PubMed  CAS  Google Scholar 

  80. Allison S (2008) Analysis of initial burst in PLGA microparticles. Expert Opin Drug Deliv 5(6):615–628

    Article  PubMed  CAS  Google Scholar 

  81. Jeyanthi R, Thanoo BC, Metha RC, Deluca PP (1996) Effect of solvent removal technique on the matrix characteristics of polylactide/glycolide microspheres for peptide delivery. J Controlled Release 38(2–3):235–244. doi:10.1016/0168-3659(95)00125-5

    Article  CAS  Google Scholar 

  82. Sandor M, Enscore D, Weston P, Mathiowitz E (2001) Effect of protein molecular weight on release from micron-sized PLGA microspheres. J Controlled Release 76(3):297–311. doi:10.1016/s0168-3659(01)00446-1

    Article  CAS  Google Scholar 

  83. Wang J, Wang BM, Schwendeman SP (2002) Characterization of the initial burst release of a model peptide from poly(-lactide-co-glycolide) microspheres. J Controlled Release 82(2–3):289–307. doi:10.1016/s0168-3659(02)00137-2

    Article  CAS  Google Scholar 

  84. Huang X, Brazel CS (2001) On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Controlled Release 73(2–3):121–136. doi:10.1016/s0168-3659(01)00248-6

    Article  CAS  Google Scholar 

  85. MallardÈ D, Boutignon F, Moine F, BarrÈ E, David S, Touchet H, Ferruti P, Deghenghi R (2003) PLGA-PEG microspheres of teverelix: influence of polymer type on microsphere characteristics and on teverelix in vitro release. Int J Pharm 261(1–2):69–80. doi:10.1016/s0378-5173(03)00272-2

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane J. Burgess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Controlled Release Society

About this chapter

Cite this chapter

Wang, Y., Burgess, D.J. (2012). Microsphere Technologies. In: Wright, J., Burgess, D. (eds) Long Acting Injections and Implants. Advances in Delivery Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0554-2_10

Download citation

Publish with us

Policies and ethics