Skip to main content

Chemical Approaches to Produce Graphene Oxide and Related Materials

Abstract

The “physical” separation of graphite layers with adhesive tape was a novel approach that spawned a flurry of activity but the chemical separation of graphite layers has been known for decades. The chapter starts off with a historical perspective of chemical exfoliation. The following topics are then discussed in detail: the morphology of chemically converted graphene (CCG) and graphene oxide (GO); models and supporting experiments that provide insight into the structural properties of GO; electrical characterization of CCG and GO; improvements made in CCG formation and functionalization of CCG; and, obtaining graphene ribbons from carbon nanotubes.

Keywords

  • Graphene Oxide
  • Graphene Sheet
  • Graphite Oxide
  • Sodium Dodecylbenzene Sulfonate
  • Chlorosulfonic Acid

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-0548-1_8
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-1-4614-0548-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5
Fig. 8.6
Fig. 8.7
Fig. 8.8
Fig. 8.9
Fig. 8.10
Fig. 8.11
Fig. 8.12
Fig. 8.13
Fig. 8.14
Fig. 8.15
Fig. 8.16
Fig. 8.17

References

  1. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109–162.

    CrossRef  Google Scholar 

  2. Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nature Mater. 2007, 6, 183–191.

    CrossRef  Google Scholar 

  3. Geim, A. K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534.

    CrossRef  Google Scholar 

  4. Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010, 110, 132–145.

    CrossRef  Google Scholar 

  5. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669.

    CrossRef  Google Scholar 

  6. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-Dimensional Atomic Crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

    CrossRef  Google Scholar 

  7. Novoselov, K. S. Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov A. A. Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature 2005, 438, 197–200.

    CrossRef  Google Scholar 

  8. Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental Observation of the Quantum Hall Effect and Berry’s Phase in Graphene. Nature 2005, 438, 201–204.

    CrossRef  Google Scholar 

  9. Brodie, B. C. On the Atomic Weight of Graphite. Philosophical Transactions of the Royal Society of London 1859, 149, 249–259.

    Google Scholar 

  10. Li, D.; Mueller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nature Nanotech. 2008, 3, 101–105.

    CrossRef  Google Scholar 

  11. Zhou, X.; Zhang, J.; Wu, H.; Yang, H.; Zhang, J.; Guo, S. Reducing Graphene Oxide via Hydroxylamine: A Simple and Efficient Route to Graphene. J. Phys. Chem. C 2011, 115, 11957–11961.

    CrossRef  Google Scholar 

  12. Gao, W.; Alemany, L. B.; Ci, L.; Ajayan, P. M. New Insights into the Structure and Reduction of Graphite Oxide. Nature Chem. 2009, 1, 403–408.

    CrossRef  Google Scholar 

  13. Mohanty, N.; Nagaraja, A.; Armesto, J.; Berry, V. High-Throughput, Ultrafast Synthesis of Solution-Dispersed Graphene via a Facile Hydride Chemistry. Small 2010, 6, 226–231.

    CrossRef  Google Scholar 

  14. Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice Jr., C. A., Ruoff, R. S. Chemical Analysis of Graphene Oxide Films after Heat and Chemical Treatments by X-Ray Photoelectron and Micro-Raman Spectroscopy. Carbon 2009, 47, 145–152.

    CrossRef  Google Scholar 

  15. Cote, L. J.; Cruz-Silva, R.; Huang, J. Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite. J. Am. Chem. Soc. 2009, 131, 11027–11032.

    CrossRef  Google Scholar 

  16. Dubin, S.; Gilje, S.; Wang, K.; Tung, V. C.; Cha. K.; Hall, A. S.; Farrar, J.; Varshneya, R.; Yang, Y.; Kaner, R. B. A One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersions in Organic Solvents. ACS Nano 2010, 4, 3845–3852.

    CrossRef  Google Scholar 

  17. Salas, E. C.; Sun, Z.; Lüttge, A.; Tour, J. M. Reduction of Graphene Oxide via Bacterial Respiration. ACS Nano 2010, 4, 4852–4856.

    CrossRef  Google Scholar 

  18. Staudenmaier, L. Verfahren zur Darstellung der Graphitsäure Ber. Dtsch. Chem. Ges. 1898, 31, 1481–1487.

    CrossRef  Google Scholar 

  19. Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339.

    CrossRef  Google Scholar 

  20. Boehm, H. P.; Clauss, A.; Fischer G. O.; Hofmann U. Dünnste Kohlenstoff-Folien. Z. Naturforschg. 1962, 17 b, 150–153.

    Google Scholar 

  21. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814.

    CrossRef  Google Scholar 

  22. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon 2007, 45, 1558–1565.

    CrossRef  Google Scholar 

  23. Gilje, S.; Han, S.; Wang, M.; Wang, K. L.; Kaner R. B. A Chemical Route to Graphene for Device Applications. Nano Lett. 2007, 7, 3394–3398.

    CrossRef  Google Scholar 

  24. Gómez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets. Nano Lett. 2007, 7, 3499–3503.

    CrossRef  Google Scholar 

  25. Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. High-Throughput Solution Processing of Large-Scale Graphene. Nature Nanotech. 2009, 4, 25–29.

    CrossRef  Google Scholar 

  26. Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud’homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J. Phys. Chem. B 2006, 110, 8535–8539.

    CrossRef  Google Scholar 

  27. Sinitskii, A.; Kosynkin, D. V.; Dimiev, A.; Tour, J. M. Corrugation of Chemically Converted Graphene Monolayers on SiO2. ACS Nano 2010, 4, 3095–3102.

    CrossRef  Google Scholar 

  28. Buchsteiner, A.; Lerf, A.; Pieper, J. Water Dynamics in Graphite Oxide Investigated with Neutron Scattering. J. Phys. Chem. B, 2006, 110, 22328–22338.

    CrossRef  Google Scholar 

  29. Gómez-Navarro, C.; Meyer, J. C.; Sundaram, R. S.; Chuvilin, A.; Kurasch, S.; Burghard, M.; Kern, K.; Kaiser, U. Atomic Structure of Reduced Graphene Oxide. Nano Lett. 2010, 10, 1144–1148.

    CrossRef  Google Scholar 

  30. Erickson, K.; Erni, R.; Lee, Z.; Alem, N.; Gannett, W.; Zettl, A. Determination of the Local Chemical Structure of GrapheneOxide and Reduced Graphene Oxide. Adv. Mater. 2010, 22, 4467–4472.

    CrossRef  Google Scholar 

  31. Lerf, A.; He, H.; Forster, M.; Klinowski, J. Structure of Graphite Oxide Revisited. J. Phys. Chem. B 1998, 102, 4477–4482.

    CrossRef  Google Scholar 

  32. He, H.; Klinowski, J.; Forster, M.; Lerf, A. A New Structural Model for Graphite Oxide. Chem. Phys. Lett. 1998, 287, 53–56.

    CrossRef  Google Scholar 

  33. He, H.; Riedl, T.; Lerf, A.; Klinowski, J. Solid-State NMR Studies of the Structure of Graphite Oxide. J. Phys. Chem. 1996, 100, 19954–19958.

    CrossRef  Google Scholar 

  34. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The Chemistry of Graphene Oxide. Chem. Soc. Rev. 2010, 39, 228–240.

    CrossRef  Google Scholar 

  35. Paci, J. T.; Belytschko, T.; Schatz, G. C. Computational Studies of the Structure, Behavior upon Heating, and Mechanical Properties of Graphite Oxide. J. Phys. Chem. C 2007, 111, 18099–18111.

    CrossRef  Google Scholar 

  36. Jung, I.; Dikin, D.; Park, S.; Cai, W.; Mielke, S. L.; Ruoff, R. S. Effect of Water Vapor on Electrical Properties of Individual Reduced Graphene Oxide Sheets. J. Phys. Chem. C 2008, 112, 20264–20268.

    CrossRef  Google Scholar 

  37. Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano, 2008, 2, 463–470.

    CrossRef  Google Scholar 

  38. Boukhvalov D. W.; Katsnelson, M. I. Modeling of Graphite Oxide. J. Am. Chem. Soc. 2008, 130, 10697–10701.

    CrossRef  Google Scholar 

  39. Kim, M. C.; Hwang, G. S.; Ruoff, R. S. Epoxide Reduction with Hydrazine on Graphene: A First Principles Study. J. Chem. Phys. 2009, 131, 064704.

    CrossRef  Google Scholar 

  40. Cai, W.; Piner, R. D.; Stadermann, F. J.; Park, S.; Shaibat, M. A.; Ishii, Y.; Yang, D.; Velamakanni, A.; An, S. J.; Stoller, M.; An, J.; Chen, D.; Ruoff, R. S. Synthesis and Solid-State NMR Structural Characterization of 13C-Labeled Graphite Oxide. Science 2008, 321, 1815–1817.

    CrossRef  Google Scholar 

  41. Jeong, H. K.; Lee, Y. P.; Lahaye, R. J. W. E.; Park, M. H.; An, K. H.; Kim, I. J.; Yang, C. W.; Park, C. Y.; Ruoff, R. S.; Lee, Y. H. Evidence of Graphitic AB Stacking Order of Graphite Oxides. J. Am. Chem. Soc. 2008, 130, 1362–1366.

    CrossRef  Google Scholar 

  42. Stankovich, S.; Piner, R. D.; Chen, X.; Wu, N.; Nguyen S. T.; Ruoff R. S. Stable Aqueous Dispersions of Graphitic Nanoplatelets via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly(sodium 4-styrenesulfonate). J. Mater. Chem. 2006, 16, 155–158.

    CrossRef  Google Scholar 

  43. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of Individual Gas Molecules Adsorbed on Graphene. Nat. Mater. 2007, 6, 652–655.

    CrossRef  Google Scholar 

  44. Eda, G.; Fanchini, G.; Chhowalla, M. Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material. Nat. Nanotech. 2009, 3, 270–274.

    CrossRef  Google Scholar 

  45. Jung, I.; Dikin, D. A.; Piner, R. D.; Ruoff, R. S. Tunable Electrical Conductivity of Individual Graphene Oxide Sheets Reduced at “Low” Temperatures. Nano Lett. 2008, 8, 4283–4287.

    CrossRef  Google Scholar 

  46. Wang, H.; Robinson, J. T.; Li, X.; Dai, H. Solvothermal Reduction of Chemically Exfoliated Graphene Sheets. J. Am. Chem. Soc. 2009, 131, 9910–9911.

    CrossRef  Google Scholar 

  47. Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Ponomarenko, L. A.; Jiang, D.; Geim, A. K. Strong Suppression of Weak Localization in Graphene. Phys. Rev. Lett. 2006, 97, 016801.

    CrossRef  Google Scholar 

  48. Tan, Y. W.; Zhang, Y.; Stormer, H. L.; Kim, P. Temperature Dependent Electron Transport in Graphene. Eur. Phys. J. Special Topics 2007, 148, 15–18.

    CrossRef  Google Scholar 

  49. Bolotin, K. I.; Sikes, K. J.; Hone, J.; Stormer, H. L.; Kim, P. Temperature-Dependent Transport in Suspended Graphene. Phys. Rev. Lett. 2008, 101, 096802.

    CrossRef  Google Scholar 

  50. Kaiser, A. B.; Gómez-Navarro, C.; Sundaram, R. S.; Burghard, M.; Kern, K. Electrical Conduction Mechanism in Chemically Derived Graphene Monolayers. Nano Lett. 2009, 9, 1787–1792.

    CrossRef  Google Scholar 

  51. Eda, G.; Mattevi, C.; Yamaguchi, H.; Kim, H. K.; Chhowalla, M. Insulator to Semimetal Transition in Graphene Oxide. J. Phys. Chem. C, 2009, 113, 15768–15771.

    CrossRef  Google Scholar 

  52. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials; Oxford University Press: Oxford, England, 1971.

    Google Scholar 

  53. Stolyarova, E.; Rim, K. T.; Ryu, S.; Maultzsch, J.; Kim, P.; Brus, L. E.; Heinz, T. F.; Hybertsen, M. S.; Flynn, G. W. High-Resolution Scanning Tunneling Microscopy Imaging of Mesoscopic Graphene Sheets on an Insulating Surface. Proc. Natl Acad. Sci. USA 2007, 104, 9209–9212.

    CrossRef  Google Scholar 

  54. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J. Boron Nitride Substrates for High-Quality Graphene Electronics. Nature Nanotech. 2010, 5, 722–726.

    CrossRef  Google Scholar 

  55. Bolotin, K. I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J., Kim, P., Stormer, H. L. Ultrahigh Electron Mobility in Suspended Graphene. Solid State Comm. 2008, 146, 351–355.

    CrossRef  Google Scholar 

  56. Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Approaching Ballistic Transport in Suspended Graphene. Nature Nanotech. 2008, 3, 491–496.

    CrossRef  Google Scholar 

  57. Si, Y.; Samulski, E. T. Synthesis of Water Soluble Graphene. Nano Lett. 2008, 8, 1679–1682.

    CrossRef  Google Scholar 

  58. Paredes, J. I.; Villar-Rodil, S.; Martinez-Alonso, A.; Tascón, J. M. D. Graphene Oxide Dispersions in Organic Solvents. Langmuir 2008, 24, 10560–10564.

    CrossRef  Google Scholar 

  59. Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. J. Am. Chem. Soc. 2008, 130, 5856–5857.

    CrossRef  Google Scholar 

  60. Luo, Z.; Lu, Y.; Somers, L. A.; Johnson, A. T. C. High Yield Preparation of Macroscopic Graphene Oxide Membranes. J. Am. Chem. Soc. 2009, 131, 898–899

    CrossRef  Google Scholar 

  61. Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W.; Geim, A. K.; Novoselov, K. S. Graphene-Based Liquid Crystal Device. Nano Lett. 2008, 8, 1704–1708.

    CrossRef  Google Scholar 

  62. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchinson, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nature Nanotech. 2008, 3, 563–568.

    CrossRef  Google Scholar 

  63. Hamilton, C. E.; Lomeda, J. R.; Sun, Z.; Tour, J. M.; Barron, A. R. High-Yield Organic Dispersions of Unfunctionalized Graphene. Nano Lett. 2009, 9, 3460–3462.

    CrossRef  Google Scholar 

  64. Bahr, J. L.; Mickelson, E. T.; Bronikowski, M. J.; Smalley, R. E.; Tour, J. M. Dissolution of small diameter single-wall carbon nanotubes in organic solvents? Chem. Commun. 2001, 193–194.

    Google Scholar 

  65. Hao, R.; Qian, W.; Zhang, L.; Hou, Y. Aqueous Dispersions of TCNQ-Anion-Stabilized Graphene Sheets. Chem. Commun. 2008, 6576–6578.

    Google Scholar 

  66. Davis, V. A.; Parra-Vasquez, A. N. G.; Green, M. J.; Rai, P. K.; Behabtu, N.; Prieto, V.; Booker, R. D.; Schmidt, J.; Kesselman, E.; Zhou, W.; Fan, H.; Adams, W. W.; Hauge, R. H.; Fischer, J. E.; Cohen, Y.; Talmon, Y.; Smalley, R. E.; Pasquali, M. True Solutions of Single-Walled Carbon Nanotubes for Assembly into Macroscopic Materials. Nature Nanotech. 2009, 4, 830–834.

    CrossRef  Google Scholar 

  67. Behabtu, N.; Lomeda, J. R.; Green, M. J.; Higginbotham, A. L.; Sinitskii, A.; Kosynkin, D. V.; Tsentalovich, D.; Parra-Vasquez, A. N. G.; A; Schmidt, J.; Kesselman, E.; Cohen, Y.; Talmon, Y.; Tour, J. M.; Pasquali, M. Spontaneous High-Concentration Dispersions and Liquid Crystals of Graphene. Nature Nanotech. 2010, 5, 406–411.

    Google Scholar 

  68. Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; McGovern, I. T.; Duesberg, G. S.; Coleman, J. N. Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620.

    CrossRef  Google Scholar 

  69. Onsager, L. The Effects of Shape on the Interaction of Colloidal Particles. Ann. NY Acad. Sci. 1949, 51, 627–659.

    CrossRef  Google Scholar 

  70. Chandrasekhar, S. Liquid Crystals. Cambridge Univ. Press. 1992.

    Google Scholar 

  71. Dresselhaus, M. S.; Dresselhaus, G. Intercalation Compounds of Graphite. Adv. Phys. 1981, 30, 139–326.

    CrossRef  Google Scholar 

  72. Enoki, T.; Suzuki, M.; Endo, M. Graphite Intercalation Compounds and Applications. Oxford Univ. Press. 2003.

    Google Scholar 

  73. Viculis, L. M.; Mack, J. J.; Mayer, O. M.; Hahn H. T.; Kaner, R. B. Intercalation and Exfoliation Routes to Graphite Nanoplatelets. J. Mater. Chem. 2005, 15, 974–978.

    CrossRef  Google Scholar 

  74. Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang E.; Dai, H. Highly Conducting Graphene Sheets and Langmuir–Blodgett Films. Nature Nanotech. 2008, 3, 538–542.

    CrossRef  Google Scholar 

  75. Lee, J. H.; Shin, D. W.; Makotchenko, V. G.; Nazarov, A. S.; Fedorov, V. E.; Kim, Y. H.; Choi, J. Y.; Kim J. M.; Yoo, J. B. One-Step Exfoliation Synthesis of Easily Soluble Graphite and Transparent Conducting Graphene Sheets. Adv. Mater. 2009, 21, 4383–4387.

    CrossRef  Google Scholar 

  76. Vallés, C.; Drummond, C.; Saadaoui, H.; Furtado, C. A.; He, M.; Roubeau, O.; Ortolani, L.; Monthioux, M.; Pénicaud, A. Solutions of Negatively Charged Graphene Sheets and Ribbons. J. Am. Chem. Soc. 2008, 130, 15802–15804.

    CrossRef  Google Scholar 

  77. Grayfer, E. D.; Nazarov, A. S.; Makotchenko, V. G.; Kim, S. J.; Fedorov, V. E. Chemically Modified Graphene Sheets by Functionalization of Highly Exfoliated Graphite. J. Mater. Chem. 2011, 21, 3410–3414.

    CrossRef  Google Scholar 

  78. Fu, W.; Kiggans, J.; Overbury, S. H.; Schwartz, V.; Liang, C. Low-Temperature Exfoliation of Multilayer-Graphene Material from FeCl3 and CH3NO2 Co-Intercalated Graphite Compound. Chem. Commun. 2011, 47, 5265–5267.

    CrossRef  Google Scholar 

  79. Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W. F.; Tour, J. M. Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets. J. Am. Chem. Soc. 2008, 130, 16201–16206.

    CrossRef  Google Scholar 

  80. Jin, Z.; Lomeda, J. R.; Price, B. P.; Lu, W.; Zhu, Y.; Tour, J. M. Mechanically Assisted Exfoliation and Functionalization of Thermally Converted Graphene Sheets. Chem. Mater. 2009, 21, 3045–3047.

    CrossRef  Google Scholar 

  81. Sun, Z.; Kohama, S.; Zhang, Z.; Lomeda, J. R.; Tour, J. M. Soluble Graphene Through Edge-Selective Functionalization. Nano Res. 2010, 3, 117–125.

    CrossRef  Google Scholar 

  82. Greaves, T. L.; Drummond, C. J. Protic Ionic Liquids: Properties and Applications. Chem. Rev. 2008, 108, 206–237.

    CrossRef  Google Scholar 

  83. Fukushima, T.; Kosaka, A.; Ishimura, Y.; Yamamoto, T.; Takigawa, T.; Ishii, N.; Aida, T. Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes. Science 2003, 300, 2072–2074.

    CrossRef  Google Scholar 

  84. Price, B. K.; Hudson, J. L.; Tour, J. M. Green Chemical Functionalization of Single-Walled Carbon Nanotubes in Ionic Liquids. J. Am. Chem. Soc. 2005, 127, 14867–14870.

    CrossRef  Google Scholar 

  85. Liu, N.; Luo1, F.; Wu, H.; Liu, Y.; Zhang, C.; Chen, J. One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite. Adv. Funct. Mater. 2008, 18, 1518–1525.

    CrossRef  Google Scholar 

  86. Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal Unzipping of Carbon Nanotubes to Form Graphene Nanoribbons. Nature 2009, 458, 872–876.

    CrossRef  Google Scholar 

  87. Wolfe, S.; Ingold, C. F.; Lemieux, R. U. Oxidation of olefins by potassium permanganate. Mechanism of a-ketol formation. J. Am. Chem. Soc. 1981, 103, 938–939.

    CrossRef  Google Scholar 

  88. Banoo, F.; Stewart, R. Mechanisms of permanganate oxidation. IX. Permanganate oxidation of aromatic alcohols in acid solution. Can. J. Chem. 1969, 47, 3199–3205.

    CrossRef  Google Scholar 

  89. Elías, A. L.; Botello-Méndez, A. R.; Meneses-Rodríguez, D.; González, V. J.; Ramírez-González, D.; Ci, L.; Muñoz-Sandoval, E.; Ajayan, P. M.; Terrones, H.; Terrones, M. Longitudinal Cutting of Pure and Doped Carbon Nanotubes to Form Graphitic Nanoribbons Using Metal Clusters as Nanoscalpels. Nano Lett. 2010, 10, 366–372.

    CrossRef  Google Scholar 

  90. Rangel, N. L.; Sotelo, J. C.; Seminario, J. M. Mechanism of Carbon Nanotubes Unzipping into Graphene Ribbons. J. Chem. Phys. 2009, 131, 031105.

    CrossRef  Google Scholar 

  91. Sinitskii, A.; Dimiev, A.; Kosynkin, D. V.; Tour, J. Graphene Nanoribbon Devices Produced by Oxidative Unzipping of Carbon Nanotubes. ACS Nano 2010, 4 5405–5413.

    CrossRef  Google Scholar 

  92. Bourlinos, A. B.; Gournis, D.; Petridis, D.; Szabó, T.; Szeri, A.; Dékány, I. Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids. Langmuir 2003, 19, 6050–6055.

    CrossRef  Google Scholar 

  93. Sinitskii, A.; Fursina, A. A.; Kosynkin, D. V.; Higginbotham, A. L.; Natelson, D.; Tour, J. M. Electronic Transport in Monolayer Graphene Nanoribbons Produced by Chemical Unzipping of Carbon Nanotubes. Appl. Phys. Lett. 2009, 95, 253108.

    CrossRef  Google Scholar 

  94. Sinitskii, A.; Dimiev, A.; Corley, D. A.; Fursina, A. A.; Kosynkin, D. V.; Tour, J. M. Kinetics of Diazonium Functionalization of Chemically Converted Graphene Nanoribbons. ACS Nano 2010, 4, 1949–1954.

    CrossRef  Google Scholar 

  95. Higginbotham, A. L.; Kosynkin, D. V.; Sinitskii, A.; Sun, Z.; Tour. J. M. Lower-Defect Graphene Oxide Nanoribbons from Multiwalled Carbon Nanotubes. ACS Nano 2010, 4, 2059–2069.

    CrossRef  Google Scholar 

  96. Cano-Márquez, A. G.; Rodríguez-Macías, F. J.; Campos-Delgado, J.; Espinosa-González, C. G.; Tristán-López, F.; Ramírez-González, D.; Cullen, D. A.; Smith, D. J.; Terrones, M.; Vega-Cantú, Y. I. Ex-MWNTs: Graphene Sheets and Ribbons Produced by Lithium Intercalation and Exfoliation of Carbon Nanotubes. Nano Lett., 2009, 9, 1527–1533.

    CrossRef  Google Scholar 

  97. Jiao, L; Zhang, L.; Wang, X.; Diankov, G.; Dai, H. Narrow Graphene Nanoribbons from Carbon Nanotubes. Nature 2009, 458, 877–880.

    CrossRef  Google Scholar 

  98. Jiao, L.; Wang, X.; Diankov, G.; Wang, H.; Dai, H. Facile Synthesis of High-Quality Graphene Nanoribbons. Nature Nanotech. 2010, 5, 321–325.

    CrossRef  Google Scholar 

  99. Kosynkin, D. V.; Lu, W.; Sinitskii, A.; Pera, G.; Sun, Z.; Tour, J. M. Highly Conductive Graphene Nanoribbons by Longitudinal Splitting of Carbon Nanotubes Using Potassium Vapor. ACS Nano, 2011, 5, 968–974.

    CrossRef  Google Scholar 

  100. Rafiee, M. A.; Lu, W.; Thomas, A. V.; Zandiatashbar, A.; Rafiee, J.; Tour, J. M.; Koratkar, N. A. Graphene Nanoribbon Composites. ACS Nano, 2010, 4, 7415–7420.

    CrossRef  Google Scholar 

  101. Zhu, Y.; Lu, W.; Sun, Z.; Kosynkin, D. V.; Yao, J. Tour, J. M. High Throughput Preparation of Large Area Transparent Electrodes Using Non-Functionalized Graphene Nanoribbons. Chem. Mater. 2011, 23, 935–939.

    CrossRef  Google Scholar 

  102. Zeng, H.; Zhi, C.; Zhang, Z.; Wei, X.; Wang, X.; Guo, W.; Bando, Y.; Golberg, D. “White Graphenes”: Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping. Nano Lett. 2010, 10, 5049–5055.

    CrossRef  Google Scholar 

  103. Erickson, K. J.; Gibb, A. L.; Sinitskii, A.; Rousseas, M.; Alem, N.; Tour, J. M.; Zettl, A. K. Longitudinal Splitting of Boron Nitride Nanotubes for the Facile Synthesis of High Quality Boron Nitride Nanoribbons. Nano Lett. 2011, 11, 3221–3226.

    Google Scholar 

  104. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30–35.

    CrossRef  Google Scholar 

  105. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457, 706–710.

    CrossRef  Google Scholar 

  106. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312–1314.

    CrossRef  Google Scholar 

  107. Potts, J. R.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S. Graphene-Based Polymer Nanocomposites. Polymer 2011, 52, 5–25.

    CrossRef  Google Scholar 

  108. Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-Based Ultracapacitors. Nano Lett. 2008, 8, 3498–3502.

    CrossRef  Google Scholar 

  109. Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z. Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano Lett. 2010, 10, 4863–4868.

    CrossRef  Google Scholar 

  110. Kim, T. Y.; Lee, H. W.; Stoller, M.; Dreyer, D. R.; Bielawski, C.; Ruoff, R. S.; Suh, K. S. High-Performance Supercapacitors Based on Poly(ionic liquid)-Modified Graphene Electrodes. ACS Nano 2010, 5, 436–442.

    CrossRef  Google Scholar 

  111. Chen, S.; Zhu, J.; Wu, X.; Han, Q.; Wang, X. Graphene Oxide-MnO2 Nanocomposites for Supercapacitors. ACS Nano 2010, 4, 2822–2830.

    CrossRef  Google Scholar 

  112. Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films. ACS Nano 2010, 4, 1963–1970.

    CrossRef  Google Scholar 

  113. Yoo, J. J.; Balakrishnan, K.; Huang, J.; Meunier, V.; Sumpter, B. G.; Srivastava, A.; Conway, M.; Reddy, A. L. M.; Yu, J.; Vajtai, R.; Ajayan, P. M. Ultrathin Planar Graphene Supercapacitors. Nano Lett. 2011, 11, 1423–1427.

    CrossRef  Google Scholar 

  114. Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S. Carbon-Based Supercapacitors Produced by Activation of Graphene. Science 2011, 332, 1537–1541.

    CrossRef  Google Scholar 

  115. Segal, M. Selling Graphene by the Ton. Nature Nanotech. 2009, 4, 612–614.

    CrossRef  Google Scholar 

  116. Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and Characterization of Graphene Oxide Paper. Nature 2007, 448, 457–460.

    CrossRef  Google Scholar 

  117. Wang, X.; Zhi, L.; Müllen, K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Lett. 2008, 8, 323–327.

    CrossRef  Google Scholar 

  118. Eda, G.; Lin, Y. Y.; Miller, S.; Chen, C. W.; Su, W. F.; Chhowalla, M. Transparent and Conducting Electrodes for Organic Electronics from Reduced Graphene Oxide. Appl. Phys. Lett. 2008, 92, 233305.

    CrossRef  Google Scholar 

  119. Wu, J.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic Solar Cells with Solution-Processed Graphene Transparent Electrodes. Appl. Phys. Lett. 2008, 92, 263302.

    CrossRef  Google Scholar 

  120. Tung, V. C.; Chen, L. M.; Allen, M. J.; Wassei, J. K.; Nelson, K.; Kaner, R. B.; Yang, Y. Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors. Nano Lett. 2009, 9, 1949–1955.

    CrossRef  Google Scholar 

  121. Yin, Z.; Sun, S.; Salim, T.; Wu, S.; Huang, X.; He, Q.; Lam, Y. M.; Zhang, H. Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes. ACS Nano 2010, 4, 5263–5268.

    CrossRef  Google Scholar 

  122. Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z.; Sheehan, P. E. Reduced Graphene Oxide Molecular Sensors. Nano Lett. 2008, 8, 3137–3140.

    CrossRef  Google Scholar 

  123. Fowler, J. D.; Allen, M. J.; Tung, V. C.; Yang, Y.; Kaner, R. B.; Weiller, B. H. Practical Chemical Sensors from Chemically Derived Graphene. ACS Nano 2009, 3 301–306.

    CrossRef  Google Scholar 

  124. Lu, G.; Ocola, L. E.; Chen, J. Gas Detection Using Low-Temperature Reduced Graphene Oxide Sheets. Appl. Phys. Lett. 2009, 94, 083111.

    CrossRef  Google Scholar 

  125. Lu, G.; Park, S.; Yu, K.; Ruoff, R. S.; Ocola, L. E.; Rosenmann, D.; Chen, J. Toward Practical Gas Sensing with Highly Reduced Graphene Oxide: A New Signal Processing Method To Circumvent Run-to-Run and Device-to-Device Variations. ACS Nano 2011, 5, 1154–1164.

    CrossRef  Google Scholar 

  126. Sudibya, H. G.; He, Q.; Zhang, H.; Chen, P. Electrical Detection of Metal Ions Using Field-Effect Transistors Based on Micropatterned Reduced Graphene Oxide Films. ACS Nano 2011, 5, 1990–1994.

    CrossRef  Google Scholar 

  127. Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877.

    CrossRef  Google Scholar 

  128. Wilson, N. R.; Pandey, P. A.; Beanland, R.; Young, R. J.; Kinloch, I. A.; Gong, L.; Liu, Z.; Suenaga, K.; Rourke, J. P.; York, S. J.; Sloan, J. Graphene Oxide: Structural Analysis and Application as a Highly Transparent Support for Electron Microscopy. ACS Nano, 2009, 3, 2547–2556.

    CrossRef  Google Scholar 

  129. Higginbotham, A. L.; Lomeda, J. R.; Morgan, A. B.; Tour, J. M. Graphite Oxide Flame-Retardant Polymer Nanocomposites. App. Mater. Interfac. 2009, 1, 2256–2261.

    CrossRef  Google Scholar 

  130. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H. Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011, 331, 568–571.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Tour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sinitskii, A., Tour, J.M. (2012). Chemical Approaches to Produce Graphene Oxide and Related Materials. In: Murali, R. (eds) Graphene Nanoelectronics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0548-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0548-1_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0547-4

  • Online ISBN: 978-1-4614-0548-1

  • eBook Packages: EngineeringEngineering (R0)