Skip to main content

The Structure of rDNA Chromatin

  • Chapter
  • First Online:
The Nucleolus

Part of the book series: Protein Reviews ((PRON,volume 15))

Abstract

The nucleolus is the site of transcription of large tandem repeated arrays of the rDNA which carry the genes for three of the four ribosomal RNAs in eukaryotes. We describe the general genomic features of the rDNA and review what is currently known about its physical organization within the nucleolus. rDNA, like other parts of eukaryotic genomes, is complexed with histones and other proteins to form chromatin, which can adopt at least three functional states that are likely to correlate with physical organization. We review the current state of knowledge of the histones and non-histone proteins in nucleolar chromatin, highlighting both similarities and differences between nucleolar and nuclear chromatin fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen JS, Lyon CE, Fox AH, Leung AKL, Lam YW, Steen H, Mann M, Lamond AI (2002) Directed proteomic analysis of the human nucleolus. Curr Biol 12(1):1–11

    Article  PubMed  Google Scholar 

  • Bartova E, Horakova AH, Uhlirova R, Raska I, Galiova G, Orlova D, Kozubek S (2010) Structure and epigenetics of nucleoli in comparison with non-nucleolar compartments. J Histochem Cytochem 58(5):391–403. doi:10.1369/jhc.2009.955435

    Article  PubMed  CAS  Google Scholar 

  • Boisvert F-M, van Koningsbruggen S, Navascues J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8(7):574–585

    Article  PubMed  CAS  Google Scholar 

  • Busch H, Smetana K (1970) The Nucleolus. Academic Press, New York

    Google Scholar 

  • Caburet S, Conti C, Schurra C, Lebofsky R, Edelstein SJ, Bensimon A (2005) Human ribosomal RNA gene arrays display a broad range of palindromic structures. Genome Res 15(8):1079–1085. doi:10.1101/gr.3970105

    Article  PubMed  CAS  Google Scholar 

  • Cesarini E, Mariotti FR, Cioci F, Camilloni G (2010) RNA polymerase I transcription silences noncoding RNAs at the ribosomal DNA locus in Saccharomyces cerevisiae. Eukaryot Cell 9(2):325–335. doi:10.1128/EC.00280-09

    Article  PubMed  CAS  Google Scholar 

  • Dundr M, Raska I (1993) Nonisotopic ultrastructural mapping of transcription sites within the nucleolus. Exp Cell Res 208(1):275–281. doi:10.1006/excr.1993.1247

    Article  PubMed  CAS  Google Scholar 

  • Earley K, Lawrence RJ, Pontes O, Reuther R, Enciso AJ, Silva M, Neves N, Gross M, Viegas W, Pikaard CS (2006) Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance. Genes Dev 20(10):1283–1293. doi:10.1101/gad.1417706

    Article  PubMed  CAS  Google Scholar 

  • Felle M, Exler JH, Merkl R, Dachauer K, Brehm A, Grummt I, Längst G (2010) DNA sequence encoded repression of rRNA gene transcription in chromatin. Nucl Acids Res 38(16):5304–5314. doi:10.1093/nar/gkq263

    Article  PubMed  CAS  Google Scholar 

  • Feng W, Yonezawa M, Ye J, Jenuwein T, Grummt I (2010) PHF8 activates transcription of rRNA genes through H3K4me3 binding and H3K9me1/2 demethylation. Nat Struct Mol Biol 17(4):445–450. doi:10.1038/nsmb.1778

    Article  PubMed  CAS  Google Scholar 

  • Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci USA 63:378–383

    Article  PubMed  CAS  Google Scholar 

  • Gard S, Light W, Xiong B, Bose T, McNairn AJ, Harris B, Fleharty B, Seidel C, Brickner JH, Gerton JL (2009) Cohesinopathy mutations disrupt the subnuclear organization of chromatin. J Cell Biol 187(4):455–462. doi:10.1083/jcb.200906075

    Article  PubMed  CAS  Google Scholar 

  • Ghoshal K, Majumder S, Datta J, Motiwala T, Bai S, Sharma SM, Frankel W, Jacob ST (2004) Role of human ribosomal RNA (rRNA) promoter methylation and of Methyl-CpG-binding protein MBD2 in the suppression of rRNA gene expression. J Biol Chem 279(8):6783–6793. doi:10.1074/jbc.M309393200

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Melendi P, Wells B, Beven AF, Shaw PJ (2001) Single ribosomal transcription units are linear, compacted Christmas trees in plant nucleoli. Plant J 27(3):223–233

    Article  PubMed  CAS  Google Scholar 

  • Grummt I (2007) Different epigenetic layers engage in complex crosstalk to define the epigenetic state of mammalian rRNA genes. Hum Mol Genet 16(R1):R21–R27. doi:10.1093/hmg/ddm020

    Article  PubMed  CAS  Google Scholar 

  • Guetg C, Lienemann P, Sirri V, Grummt I, Hernandez-Verdun D, Hottiger MO, Fussenegger M, Santoro R (2010) The NORC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats. EMBO J 29(13):2135–2146. doi:10.1038/emboj.2010.17

    Article  PubMed  CAS  Google Scholar 

  • Hadjiolov AA (1985) The nucleolus and ribosome biogenesis, vol 12, Cell Biol Monogr. Springer, Wien

    Google Scholar 

  • Heitz E (1931) Die ursache der gesetzmässigen zahl, lage, form und grösse pflanzlicher nukleolen. Planta 12:775–844

    Article  Google Scholar 

  • Highett MI, Rawlins DJ, Shaw PJ (1993) Different patterns of rDNA distribution in Pisum sativum nucleoli correlate with different levels of nucleolar activity. J Cell Sci 104(Pt3):843–852

    CAS  Google Scholar 

  • Hontz RD, Niederer RO, Johnson JM, Smith JS (2009) Genetic identification of factors that modulate ribosomal DNA transcription in Saccharomyces cerevisiae. Genetics 182(1):105–119. doi:10.1534/genetics.108.100313

    Article  PubMed  CAS  Google Scholar 

  • Hozak P, Cook PR, Schofer C, Mosgoller W, Wachtler F (1994) Site of transcription of ribosomal-RNA and intranucleolar structure in HeLa cells. J Cell Sci 107(Pt2):639–648

    PubMed  CAS  Google Scholar 

  • Hwang WW, Madhani HD (2009) Nonredundant requirement for multiple histone modifications for the early anaphase release of the mitotic exit regulator CDC14 from nucleolar chromatin. PLoS Genet 5(8):e1000588

    Article  PubMed  Google Scholar 

  • Jasencakova Z, Meister A, Walter J, Turner BM, Schubert I (2000) Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription. Plant Cell 12(11):2087–2100

    PubMed  CAS  Google Scholar 

  • Jordan EG (1984) Nucleolar nomenclature. J Cell Sci 67:217–220

    Article  Google Scholar 

  • Kobayashi T (2008) A new role of the rDNA and nucleolus in the nucleus – rDNA instability maintains genome integrity. Bioessays 30(3):267–272. doi:10.1002/bies.20723

    Article  PubMed  CAS  Google Scholar 

  • Koberna K, Malinsky J, Pliss A, Masata M, Vecerova J, Fialova M, Bednar J, Raska I (2002) Ribosomal genes in focus: New transcripts label the dense fibrillar components and form clusters indicative of “Christmas trees” in situ. J Cell Biol 157(5):743–748

    Article  PubMed  CAS  Google Scholar 

  • Kruhlak M, Crouch EE, Orlov M, Montano C, Gorski SA, Nussenzweig A, Misteli T, Phair RD, Casellas R (2007) The ATM repair pathway inhibits RNA polymerase I transcription in response to chromosome breaks. Nature 447(7145):730–734. doi:10.1038/nature05842

    Article  PubMed  CAS  Google Scholar 

  • Leitch AR, Mosgoller W, Shi M, Heslop-Harrison JS (1992) Different patterns of rDNA organization at interphase in nuclei of wheat and rye. J Cell Sci 101(Pt 4):751–757

    PubMed  Google Scholar 

  • Li H, Luan S (2010) ATFKBP53 is a histone chaperone required for repression of ribosomal RNA gene expression in Arabidopsis. Cell Res 20(3):357–366

    Article  PubMed  CAS  Google Scholar 

  • Lima-de-Faria A (1976) The chromosome field. I. Prediction of the location of ribosomal cistrons. Hereditas 83:1–22

    Article  Google Scholar 

  • Majumder S, Alinari L, Roy S, Miller T, Datta J, Sif S, Baiocchi R, Jacob ST (2010) Methylation of histone H3 and H4 by PRMT5 regulates ribosomal RNA gene transcription. J Cell Biochem 109(3):553–563. doi:10.1002/jcb.22432

    PubMed  CAS  Google Scholar 

  • Martin C, Chen S, Maya-Mendoza A, Lovric J, Sims PFG, Jackson DA (2009) Lamin B1 maintains the functional plasticity of nucleoli. J Cell Sci 122(10):1551–1562. doi:10.1242/jcs.046284

    Article  PubMed  CAS  Google Scholar 

  • Mayer C, Neubert M, Grummt I (2008) The structure of NORC-associated RNA is crucial for targeting the chromatin remodelling complex NORC to the nucleolus. EMBO Rep 9(8):774–780. doi:10.1038/embor.2008.109

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1934) The relation of a particular chromosomal element to the development of the nucleoli in Zea mays. Z Zellforsch Mikrosk Anat 21:294–328

    Article  Google Scholar 

  • McKeown P, Shaw P (2009) Chromatin: Linking structure and function in the nucleolus. Chromosoma 118(1):11–23. doi:10.1007/s00412-008-0184-2

    Article  PubMed  Google Scholar 

  • McStay B, Grummt I (2008) The epigenetics of rRNA genes: From molecular to chromosome bio­logy. Annu Rev Cell Dev Biol 24(1):131–157. doi:10.1146/annurev.cellbio.24.110707.175259

    Article  PubMed  CAS  Google Scholar 

  • Mekhail K, Seebacher J, Gygi SP, Moazed D (2008) Role for perinuclear chromosome tethering in maintenance of genome stability. Nature 456(7222):667–670. doi:10.1038/nature07460

    Article  PubMed  CAS  Google Scholar 

  • Merz K, Hondele M, Goetze H, Gmelch K, Stoeckl U, Griesenbeck J (2008) Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules. Genes Dev 22(9):1190–1204. doi:10.1101/gad.466908

    Article  PubMed  CAS  Google Scholar 

  • Miller OLJ, Beatty RR (1969) Visualization of nucleolar genes. Science 164:955–957

    Article  PubMed  Google Scholar 

  • Mizuno H, Sasaki T, Matsumoto T (2008) Characterization of internal structure of the nucleolar organizing region in rice (Oryza sativa l.). Cytogenet Genome Res 121(3–4):282–285. doi:10.1159/000138898

    Article  PubMed  CAS  Google Scholar 

  • Murayama A, Ohmori K, Fujimura A, Minami H, Yasuzawa-Tanaka K, Kuroda T, Oie S, Daitoku H, Okuwaki M, Nagata K, Fukamizu A, Kimura K, Shimizu T, Yanagisawa J (2008) Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133(4):627–639

    Article  PubMed  CAS  Google Scholar 

  • Paredes S, Maggert KA (2009) Ribosomal DNA contributes to global chromatin regulation. Proc Natl Acad Sci USA 106(42):17829–17834. doi:10.1073/pnas.0906811106

    Article  PubMed  CAS  Google Scholar 

  • Pendle AF, Clark GP, Boon R, Lewandowska D, Lam YW, Andersen J, Mann M, Lamond AI, Brown JWS, Shaw PJ (2005) Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 16(1):260–269. doi:10.1091/mbc.E04-09-0791

    Article  PubMed  CAS  Google Scholar 

  • Peng JC, Karpen GH (2007) H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol 9(1):25–35. doi:10.1038/ncb1514

    Article  PubMed  CAS  Google Scholar 

  • Plata M, Kang H, Zhang S, Kuruganti S, Hsu S-J, Labrador M (2009) Changes in chromatin structure correlate with transcriptional activity of nucleolar rDNA in polytene chromosomes. Chromosoma 118(3):303–322. doi:10.1007/s00412-008-0198-9

    Article  PubMed  CAS  Google Scholar 

  • Prokopowich CD, Gregory TR, Crease TJ (2003) The correlation between rDNA copy number and genome size in eukaryotes. Genome 46(1):48–50. doi:10.1139/g02-103

    Article  PubMed  CAS  Google Scholar 

  • Raska I, Shaw PJ, Cmarko D (2006a) New insights into nucleolar architecture and activity. Int Rev Cytol 255:177–235

    Article  PubMed  CAS  Google Scholar 

  • Raska I, Shaw PJ, Cmarko D (2006b) Structure and function of the nucleolus in the spotlight. Curr Opin Cell Biol 18(3):325–334

    Article  PubMed  CAS  Google Scholar 

  • Rubbi CP, Milner J (2003) Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 22(22):6068–6077

    Article  PubMed  CAS  Google Scholar 

  • Santoro R, Li J, Grummt I (2002) The nucleolar remodeling complex NORC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat Genet 32(3):393–396

    Article  PubMed  CAS  Google Scholar 

  • Santoro R, Schmitz KM, Sandoval J, Grummt I (2010) Intergenic transcripts originating from a subclass of ribosomal DNA repeats silence ribosomal RNA genes in trans. EMBO Rep 11(1):52–58. doi:10.1038/embor.2009.254

    Article  PubMed  CAS  Google Scholar 

  • Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312(5776):1059–1063. doi:10.1126/science.1127168

    Article  PubMed  CAS  Google Scholar 

  • Shaw PJ (2010) Nucleolus. In: Encyclopaedia of life sciences. John Wiley & Sons, Ltd, Chichester, UK. doi: 10.1002/9780470015902.a0001352.pub3, http://www.els.net/

  • Shaw PJ, Jordan EG (1995) The nucleolus. Annu Rev Cell Dev Biol 11:93–121

    Article  PubMed  CAS  Google Scholar 

  • Shaw PJ, Highett MI, Beven AF, Jordan EG (1995) The nucleolar architecture of polymerase I transcription and processing. EMBO J 14(12):2896–2906

    PubMed  CAS  Google Scholar 

  • Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles–a cause of aging in yeast. Cell 91(7):1033–1042. doi:S0092-8674(00)80493-6

    Article  PubMed  CAS  Google Scholar 

  • Stoldt S, Wenzel D, Schulze E, Doenecke D, Happel N (2007) G1 phase-dependent nucleolar accumulation of human histone H1x. Biol Cell 99:541–552

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi Y, Horiuchi T, Kobayashi T (2003) Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev 17(12):1497–1506. doi:10.1101/gad.1085403

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Okamoto K, Teye K, Umata T, Yamagiwa N, Suto Y, Zhang Y, Tsuneoka M (2010) Jmjc enzyme KDM2A is a regulator of rRNA transcription in response to starvation. EMBO J 29(9):1510–1522. doi:10.1038/emboj.2010.56

    Article  PubMed  CAS  Google Scholar 

  • Thompson WF, Beven AF, Wells B, Shaw PJ (1997) Sites of rDNA transcription are widely dispersed through the nucleolus in Pisum sativum and can comprise single genes. Plant J 12(3):571–581

    Article  PubMed  CAS  Google Scholar 

  • Thon G, Verhein-Hansen J (2000) Four chromo-domain proteins of Schizosaccharomyces pombe differentially repress transcription at various chromosomal locations. Genetics 155(2):551–568

    PubMed  CAS  Google Scholar 

  • Tsang CK, Bertram PG, Ai W, Drenan R, Zheng XFS (2003) Chromatin-mediated regulation of nucleolar structure and RNA pol I localization by TOR. EMBO J 22(22):6045–6056

    Article  PubMed  CAS  Google Scholar 

  • Wang B-D, Strunnikov A (2008) Transcriptional homogenization of rDNA repeats in the episome-based nucleolus induces genome-wide changes in the chromosomal distribution of condensin. Plasmid 59(1):45–53

    Article  PubMed  CAS  Google Scholar 

  • Wansink DG, Schul W, van der Kraan I, van Steensel B, van Driel R, de Jong L (1993) Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol 122(2):283–293

    Article  PubMed  CAS  Google Scholar 

  • Zentner GE, Hurd EA, Schnetz MP, Handoko L, Wang C, Wang Z, Wei C, Tesar PJ, Hatzoglou M, Martin DM, Scacheri PC (2010) CHD7 functions in the nucleolus as a positive regulator of ribosomal RNA biogenesis. Hum Mol Genet 19(18):3491–3501. doi:10.1093/hmg/ddq265

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Paul LK, Grafi G (2009) The maize HMGA protein is localized to the nucleolus and can be acetylated in vitro at its globular domain, and phosphorylation by CDK reduces its binding activity to AT-rich DNA. Biochim Biophys Acta 1789(11–12):751–757

    PubMed  CAS  Google Scholar 

  • Zhou Y, Grummt I (2005) The PHD finger/bromodomain of NORC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing. Curr Biol 15(15):1434–1438. doi:10.1016/j.cub.2005.06.057

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Schmitz K-M, Mayer C, Yuan X, Akhtar A, Grummt I (2009) Reversible acetylation of the chromatin remodelling complex NORC is required for non-coding RNA-dependent silencing. Nat Cell Biol 11(8):1010–1016. doi:10.1038/ncb1914

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Wang Y, Li X, Wang Y, Xu L, Wang X, Sun T, Dong X, Chen L, Mao H, Yu Y, Li J, Chen PA, Chen CD (2010) PHF8 is a histone H3K9me2 demethylase regulating rRNA synthesis. Cell Res 20(7):794–801

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Shaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shaw, P.J., McKeown, P.C. (2011). The Structure of rDNA Chromatin. In: Olson, M. (eds) The Nucleolus. Protein Reviews, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0514-6_3

Download citation

Publish with us

Policies and ethics