The Nucleolus pp 281-299 | Cite as

The Role of the Nucleolus in the Stress Response

  • Laura A. Tollini
  • Rebecca A. Frum
  • Yanping Zhang
Part of the Protein Reviews book series (PRON, volume 15)


The TP53 tumor suppressor gene and its protein product p53, play a critical role in the cellular stress response. Upon exposure to stressors, such as DNA damage, oncogene activation, or perturbations to the ribosome biogenesis, p53 is activated and is capable of inducing cell cycle arrest, apoptosis, or senescence via the transactivation of genes such as p21, Noxa, Bax, Puma, and GADD45. While p53 expression, and activity, is integral to the cellular stress response, overexpression of p53 is inhibitory to embryonic development, illustrating the importance of proper p53 regulation. Growing evidence has implicated the nucleolus, as well as nucleolar proteins, in the regulation of both p53 and its primary negative regulator Mdm2. The role of nucleolar proteins, including ARF, B23/NPM, and ribosomal proteins, in mediating the p53 stress response serves to link the cell cycle progression and protein synthesis, and suggests p53 is a common regulator capable of coordinating these processes to best maintain the genetic integrity of the cell.


Cell Cycle Arrest Murine Double Minute Cellular Stress Response Nucleolar Protein Ring Finger Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Koji Itahana and Chad Deisenroth for figure art. We apologize for not being able to cite all of the relevant papers due to limited space. The work is supported in part by grants from The Leukemia & Lymphoma Society, The American Cancer Society, and The National Institute of Health.


  1. Adachi Y, Copeland TD, Hatanaka M, Oroszlan S (1993) Nucleolar targeting signal of Rex protein of human T-cell leukemia virus type I specifically binds to nucleolar shuttle protein B-23. J Biol Chem 268(19):13930–13934PubMedGoogle Scholar
  2. Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M (2003) Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426(6966):570–574PubMedGoogle Scholar
  3. Appella E, Anderson CW (2001) Post-translational modifications and activation of p53 by ­genotoxic stresses. Eur J Biochem 268(10):2764–2772PubMedGoogle Scholar
  4. Bertwistle D, Sugimoto M, Sherr CJ (2004) Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol Cell Biol 24(3):985–996PubMedGoogle Scholar
  5. Bhat KP, Itahana K, Jin A, Zhang Y (2004) Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation. Embo J 23(12):2402–2412PubMedGoogle Scholar
  6. Borer RA, Lehner CF, Eppenberger HM, Nigg EA (1989) Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56(3):379–390PubMedGoogle Scholar
  7. Brady SN, Yu Y, Maggi LB Jr, Weber JD (2004) ARF impedes NPM/B23 shuttling in an Mdm2-sensitive tumor suppressor pathway. Mol Cell Biol 24(21):9327–9338PubMedGoogle Scholar
  8. Brooks CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15(2):164–171PubMedGoogle Scholar
  9. Carnero A, Hudson JD, Price CM, Beach DH (2000) p16INK4a and p19ARF act overlapping pathways in cellular immortalization. Nat Cell Biol 2:148–155PubMedGoogle Scholar
  10. Chen D, Zhang Z, Li M, Wang W, Li Y, Rayburn ER, Hill DL, Wang H, Zhang R (2007) Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function. Oncogene 26:5029–5037PubMedGoogle Scholar
  11. Cmejla R, Cmejlova J, Handrkova H, Petrak J, Petrtylova K, Mihal V, Stary J, Cerna Z, Jabali Y, Pospisilova D (2009) Identification of mutations in the ribosomal protein L5 (RPL5) and ribosomal protein L11 (RPL11) genes in Czech patients with Diamond-Blackfan anemia. Hum Mutat 30(3):321–327PubMedGoogle Scholar
  12. Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG (2002) Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 4(7):529–533PubMedGoogle Scholar
  13. Colombo E, Bonetti P, Lazzerini Denchi E, Martinelli P, Zamponi R, Marine JC, Helin K, Falini B, Pelicci PG (2005) Nucleophosmin is required for DNA integrity and p19Arf protein stability. Mol Cell Biol 25(20):8874–8886PubMedGoogle Scholar
  14. da Rocha AB, Lopes RM, Schwartsmann G (2001) Natural products in anticancer therapy. Curr Opin Pharmacol 1(4):364–369PubMedGoogle Scholar
  15. Dai MS, Lu H (2004) Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem 279(43):44475–44482PubMedGoogle Scholar
  16. Dai MS, Zeng SX, Jin Y, Sun XX, David L, Lu H (2004) Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal perturbation but not to translation inhibition. Mol Cell Biol 24(17):7654–7668PubMedGoogle Scholar
  17. Dai MS, Jin Y, Gallegos JR, Lu H (2006a) Balance of Yin and Yang: ubiquitylation-mediated regulation of p53 and c-Myc. Neoplasia 8(8):630–644PubMedGoogle Scholar
  18. Dai MS, Shi D, Jin Y, Sun XX, Zhang Y, Grossman SR, Lu H (2006b) Regulation of the MDM2-p53 pathway by ribosomal protein L11 involves a post-ubiquitination mechanism. J Biol Chem 281(34):24304–24313PubMedGoogle Scholar
  19. Dai MS, Sun XX, Lu H (2008) Aberrant expression of nucleostemin activates p53 and induces cell cycle arrest via inhibition of MDM2. Mol Cell Biol 28(13):4365–4376PubMedGoogle Scholar
  20. de Oca M, Luna R, Wagner DS, Lozano G (1995) Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378(6553):203–206Google Scholar
  21. de Stanchina E, McCurrach ME, Zindy F, Shieh S-Y, Ferbeyre G, Samuelson AV, Prives C, Roussel MF, Sherr CJ, Lowe SW (1998) E1A signaling to p53 involves the p19ARF tumor suppressor. Genes Dev 12:2434–2442PubMedGoogle Scholar
  22. Dimri GP, Itahana K, Acosta M, Campisi J (2000) Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor. Mol Cell Biol 20(1):273–285PubMedGoogle Scholar
  23. Draptchinskaia N, Gustavsson P, Andersson B, Pettersson M, Willig TN, Dianzani I, Ball S, Tchernia G, Klar J, Matsson H, Tentler D, Mohandas N, Carlsson B, Dahl N (1999) The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat Genet 21(2):169–175PubMedGoogle Scholar
  24. Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N, Raza A, Root DE, Attar E, Ellis SR, Golub TR (2008) Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451(7176):335–339PubMedGoogle Scholar
  25. Fankhauser C, Izaurralde E, Adachi Y, Wingfield P, Laemmli UK (1991) Specific complex of human immunodeficiency virus type 1 rev and nucleolar B23 proteins: dissociation by the Rev response element. Mol Cell Biol 11(5):2567–2575PubMedGoogle Scholar
  26. Feuerstein N, Mond JJ (1987) “Numatrin,” a nuclear matrix protein associated with induction of proliferation in B lymphocytes. J Biol Chem 262(23):11389–11397PubMedGoogle Scholar
  27. Feuerstein N, Spiegel S, Mond JJ (1988) The nuclear matrix protein, numatrin (B23), is associated with growth factor-induced mitogenesis in Swiss 3T3 fibroblasts and with T lymphocyte proliferation stimulated by lectins and anti-T cell antigen receptor antibody. J Cell Biol 107(5):1629–1642PubMedGoogle Scholar
  28. Frum R, Ramamoorthy M, Mohanraj L, Deb S, Deb SP (2009) MDM2 controls the timely expression of cyclin A to regulate the cell cycle. Mol Cancer Res 7(8):1253–1267PubMedGoogle Scholar
  29. Gao H, Jin S, Song Y, Fu M, Wang M, Liu Z, Wu M, Zhan Q (2005) B23 regulates GADD45a nuclear translocation and contributes to GADD45a-induced cell cycle G2-M arrest. J Biol Chem 280(12):10988–10996PubMedGoogle Scholar
  30. Gazda HT, Sheen MR, Vlachos A, Choesmel V, O’Donohue MF, Schneider H, Darras N, Hasman C, Sieff CA, Newburger PE, Ball SE, Niewiadomska E, Matysiak M, Zaucha JM, Glader B, Niemeyer C, Meerpohl JJ, Atsidaftos E, Lipton JM, Gleizes PE, Beggs AH (2008) Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am J Hum Genet 83(6):769–780PubMedGoogle Scholar
  31. Gazzeri S, Della Valle V, Chaussade L, Brambilla C, Larsen CJ, Brambilla E (1998) The human p19ARF protein encoded by the beta transcript of the p16INK4a gene is frequently lost in small cell lung cancer. Cancer Res 58(17):3926–3931PubMedGoogle Scholar
  32. Gilkes DM, Chen L, Chen J (2006) MDMX regulation of p53 response to ribosomal stress. EMBO J 25(23):5614–5625PubMedGoogle Scholar
  33. Gjerset RA (2006) DNA damage, p14ARF, nucleophosmin (NPM/B23), and cancer. J Mol Histol 37(5–7):239–251PubMedGoogle Scholar
  34. Grisendi S, Bernardi R, Rossi M, Cheng K, Khandker L, Manova K, Pandolfi PP (2005) Role of nucleophosmin in embryonic development and tumorigenesis. Nature 437(7055):147–153PubMedGoogle Scholar
  35. Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299PubMedGoogle Scholar
  36. He H, Sun Y (2007) Ribosomal protein S27L is a direct p53 target that regulates apoptosis. Oncogene 26(19):2707–2716PubMedGoogle Scholar
  37. Herrera JE, Savkur R, Olson MO (1995) The ribonuclease activity of nucleolar protein B23. Nucleic Acids Res 23(19):3974–3979PubMedGoogle Scholar
  38. Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ, Mak TW (2000) DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287(5459):1824–1827PubMedGoogle Scholar
  39. Holzel M, Rohrmoser M, Schlee M, Grimm T, Harasim T, Malamoussi A, Gruber-Eber A, Kremmer E, Hiddemann W, Bornkamm GW, Eick D (2005) Mammalian WDR12 is a novel member of the Pes1-Bop1 complex and is required for ribosome biogenesis and cell proliferation. J Cell Biol 170(3):367–378PubMedGoogle Scholar
  40. Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420:25–27PubMedGoogle Scholar
  41. Huang J, Berger SL (2008) The emerging field of dynamic lysine methylation of non-histone proteins. Curr Opin Genet Dev 18(2):152–158PubMedGoogle Scholar
  42. Huang M, Ji Y, Itahana K, Zhang Y, Mitchell B (2008) Guanine nucleotide depletion inhibits pre-ribosomal RNA synthesis and causes nucleolar disruption. Leuk Res 32(1):131–141PubMedGoogle Scholar
  43. Iapalucci-Espinoza S, Franze-Fernandez MT (1979) Effect of protein synthesis inhibitors and low concentrations of actinomycin D on ribosomal RNA synthesis. FEBS Lett 107(2):281–284PubMedGoogle Scholar
  44. Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG, Masucci M, Pramanik A, Selivanova G (2004) Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 10(12):1321–1328PubMedGoogle Scholar
  45. Itahana K, Bhat KP, Jin A, Itahana Y, Hawke D, Kobayashi R, Zhang Y (2003) Tumor suppressor ARF degrades B23, a nucleolar protein Involved in ribosome biogenesis and cell proliferation. Mol Cell 12(5):1151–1164PubMedGoogle Scholar
  46. Itahana K, Mao H, Jin A, Itahana Y, Clegg HV, Lindstrom MS, Bhat KP, Godfrey VL, Evan GI, Zhang Y (2007) Targeted inactivation of Mdm2 RING finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation. Cancer Cell 12(4):355–366PubMedGoogle Scholar
  47. Jin A, Itahana K, O’Keefe K, Zhang Y (2004) Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol Cell Biol 24(17):7669–7680PubMedGoogle Scholar
  48. Jin Y, Dai MS, Lu SZ, Xu Y, Luo Z, Zhao Y, Lu H (2006) 14-3-3gamma binds to MDMX that is phosphorylated by UV-activated Chk1, resulting in p53 activation. EMBO J 25(6):1207–1218PubMedGoogle Scholar
  49. Jones SN, Roe AE, Donehower LA, Bradley A (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208PubMedGoogle Scholar
  50. Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, Grosveld G, Sherr CJ (1997) Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91:649–659PubMedGoogle Scholar
  51. Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel M, Sherr CJ (1998) Functional and physical interaction of the ARF tumor suppressor with p53 and MDM2. Proc Natl Acad Sci USA 95:8292–8297PubMedGoogle Scholar
  52. Korgaonkar C, Zhao L, Modestou M, Quelle DE (2002) ARF function does not require p53 stabilization or Mdm2 relocalization. Mol Cell Biol 22(1):196–206PubMedGoogle Scholar
  53. Korgaonkar C, Hagen J, Tompkins V, Frazier AA, Allamargot C, Quelle FW, Quelle DE (2005) Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function. Mol Cell Biol 25(4):1258–1271PubMedGoogle Scholar
  54. Kubbutat MHG, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387:299–303PubMedGoogle Scholar
  55. Kuo ML, den Besten W, Bertwistle D, Roussel MF, Sherr CJ (2004) N-terminal polyubiquitination and degradation of the Arf tumor suppressor. Genes Dev 18(15):1862–1874PubMedGoogle Scholar
  56. Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D, Laiho M (2004) Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 5(5):465–475PubMedGoogle Scholar
  57. Lai K, Amsterdam A, Farrington S, Bronson RT, Hopkins N, Lees JA (2009) Many ribosomal protein mutations are associated with growth impairment and tumor predisposition in zebrafish. Dev Dyn 238(1):76–85PubMedGoogle Scholar
  58. Lee SY, Park JH, Kim S, Park EJ, Yun Y, Kwon J (2005) A proteomics approach for the identification of nucleophosmin and heterogeneous nuclear ribonucleoprotein C1/C2 as chromatin-­binding proteins in response to DNA double-strand breaks. Biochem J 388(Pt 1):7–15PubMedGoogle Scholar
  59. Lempiainen H, Shore D (2009) Growth control and ribosome biogenesis. Curr Opin Cell Biol 21(6):855–863PubMedGoogle Scholar
  60. Li YP (1997) Protein B23 is an important human factor for the nucleolar localization of the human immunodeficiency virus protein Tat. J Virol 71(5):4098–4102PubMedGoogle Scholar
  61. Lindstrom MS, Zhang Y (2008) Ribosomal protein S9 is a novel B23/NPM-binding protein required for normal cell proliferation. J Biol Chem 283(23):15568–15576PubMedGoogle Scholar
  62. Lindstrom MS, Jin A, Deisenroth C, White Wolf G, Zhang Y (2007) Cancer-Associated Mutations in the MDM2 Zinc Finger Domain Disrupt Ribosomal Protein Interaction and Attenuate MDM2-Induced p53 Degradation. Mol Cell Biol 27(3):1056–1068PubMedGoogle Scholar
  63. Liu JJ, Huang BH, Zhang J, Carson DD, Hooi SC (2006) Repression of HIP/RPL29 expression induces differentiation in colon cancer cells. J Cell Physiol 207(2):287–292PubMedGoogle Scholar
  64. Llanos S, Serrano M (2010) Depletion of ribosomal protein L37 occurs in response to DNA damage and activates p53 through the L11/MDM2 pathway. Cell Cycle 9(19):4005–4012PubMedGoogle Scholar
  65. Llanos S, Clark PA, Rowe J, Peters G (2001) Stabilization of p53 by p14ARF without relocation of MDM2 to the nucleolus. Nat Cell Biol 3(5):445–452PubMedGoogle Scholar
  66. Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH (2003) Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 3(6):577–587PubMedGoogle Scholar
  67. Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3(5):330–338PubMedGoogle Scholar
  68. Macias E, Jin A, Deisenroth C, Bhat K, Mao H, Lindstrom MS, Zhang Y (2010) An ARF-independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 Interaction. Cancer Cell 18(3):231–243PubMedGoogle Scholar
  69. Marechal V, Elenbaas B, Piette J, Nicolas J-C, Levine AJ (1994) The ribosomal protein L5 is associated with mdm-2 and mdm2-p53 complexes. MolCell Biol 14:7414–7420Google Scholar
  70. Meder VS, Boeglin M, de Murcia G, Schreiber V (2005) PARP-1 and PARP-2 interact with nucleophosmin/B23 and accumulate in transcriptionally active nucleoli. J Cell Sci 118(Pt 1):211–222PubMedGoogle Scholar
  71. Melchior F, Hengst L (2002) SUMO-1 and p53. Cell Cycle 1(4):245–249PubMedGoogle Scholar
  72. Nozawa Y, Van Belzen N, Van der Made AC, Dinjens WN, Bosman FT (1996) Expression of nucleophosmin/B23 in normal and neoplastic colorectal mucosa. J Pathol 178(1):48–52PubMedGoogle Scholar
  73. Ofir-Rosenfeld Y, Boggs K, Michael D, Kastan MB, Oren M (2008) Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26. Mol Cell 32(2):180–189PubMedGoogle Scholar
  74. Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan PK, Knudsen ES, Hofmann IA, Snyder JD, Bove KE, Fukasawa K (2000) Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 103(1):127–140PubMedGoogle Scholar
  75. Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B (1993) Oncoprotein MDM2 conceals the activation domain of tumor suppressor p53. Nature 362:857–860PubMedGoogle Scholar
  76. Palmero I, Pantoja C, Serrano M (1998) p19ARF links the tumor suppressor p53 and Ras. Nature 395:125–126PubMedGoogle Scholar
  77. Panic L, Tamarut S, Sticker-Jantscheff M, Barkic M, Solter D, Uzelac M, Grabusic K, Volarevic S (2006) Ribosomal protein S6 gene haploinsufficiency is associated with activation of a p53-dependent checkpoint during gastrulation. Mol Cell Biol 26(23):8880–8891PubMedGoogle Scholar
  78. Perry RP, Kelley DE (1970) Inhibition of RNA synthesis by actinomycin D: characteristic dose-response of different RNA species. J Cell Physiol 76(2):127–139PubMedGoogle Scholar
  79. Pestov DG, Strezoska Z, Lau LF (2001) Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Mol Cell Biol 21(13):4246–4255PubMedGoogle Scholar
  80. Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, DePinho RA (1998) The INK4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 92:713–723PubMedGoogle Scholar
  81. Prives C (1998) Signaling to p53: breaking the MDM2-p53 circuit. Cell 95:5–8PubMedGoogle Scholar
  82. Prives C, Manley JL (2001) Why is p53 acetylated? Cell 107(7):815–818PubMedGoogle Scholar
  83. Quelle DE, Zindy F, Ashmun R, Sherr CJ (1995) Alterative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83:993–1000PubMedGoogle Scholar
  84. Savkur RS, Olson MO (1998) Preferential cleavage in pre-ribosomal RNA byprotein B23 endoribonuclease. Nucleic Acids Res 26(19):4508–4515PubMedGoogle Scholar
  85. Scheer U, Hock R (1999) Structure and function of the nucleolus. Curr Opin Cell Biol 11(3):385–390PubMedGoogle Scholar
  86. Schlott T, Reimer S, Jahns A, Ohlenbusch A, Ruschenburg I, Nagel H, Droese M (1997) Point mutations and nucleotide insertions in the MDM2 zinc finger structure of human tumors. JPathol 182:54–61Google Scholar
  87. Shangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S, Nikolovska-Coleska Z, Ding K, Wang G, Chen J, Bernard D, Zhang J, Lu Y, Gu Q, Shah RB, Pienta KJ, Ling X, Kang S, Guo M, Sun Y, Yang D, Wang S (2008) Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci U S A 105(10):3933–3938PubMedGoogle Scholar
  88. Sherr CJ (2001) Parsing Ink4a/Arf: “pure” p16-null mice. Cell 106(5):531–534PubMedGoogle Scholar
  89. Sherr CJ (2006) Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 6(9):663–673PubMedGoogle Scholar
  90. Sherr CJ, Weber JD (2000) The ARF-p53 pathway. Curr Opin Genet Dev 10:94–99PubMedGoogle Scholar
  91. Skarie JM, Link BA (2008) The primary open-angle glaucoma gene WDR36 functions in ribosomal RNA processing and interacts with the p53 stress-response pathway. Hum Mol Genet 17(16):2474–2485PubMedGoogle Scholar
  92. Sobell HM (1985) Actinomycin and DNA transcription. Proc Natl Acad Sci U S A 82(16):5328–5331PubMedGoogle Scholar
  93. Spector DL, Ochs RL, Busch H (1984) Silver staining, immunofluorescence, and immunoelectron microscopic localization of nucleolar phosphoproteins B23 and C23. Chromosoma 90(2):139–148PubMedGoogle Scholar
  94. Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH, Peters G (1998) The alternative product from the human CDK2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J 17:5001–5014PubMedGoogle Scholar
  95. Strezoska Z, Pestov DG, Lau LF (2000) Bop1 is a mouse WD40 repeat nucleolar protein involved in 28S and 5. 8S RRNA processing and 60S ribosome biogenesis. Mol Cell Biol 20(15):5516–5528PubMedGoogle Scholar
  96. Sun XX, Dai MS, Lu H (2007) 5-fluorouracil activation of p53 involves an MDM2-ribosomal protein interaction. J Biol Chem 282(11):8052–8059PubMedGoogle Scholar
  97. Sun XX, Dai MS, Lu H (2008) Mycophenolic acid activation of p53 requires ribosomal proteins L5 and L11. J Biol Chem 283(18):12387–12392PubMedGoogle Scholar
  98. Szebeni A, Herrera JE, Olson MO (1995) Interaction of nucleolar protein B23 with peptides related to nuclear localization signals. Biochemistry 34(25):8037–8042PubMedGoogle Scholar
  99. Szebeni A, Mehrotra B, Baumann A, Adam SA, Wingfield PT, Olson MO (1997) Nucleolar protein B23 stimulates nuclear import of the HIV-1 Rev protein and NLS-conjugated albumin. Biochemistry 36(13):3941–3949PubMedGoogle Scholar
  100. Takagi M, Absalon MJ, McLure KG, Kastan MB (2005) Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 123(1):49–63PubMedGoogle Scholar
  101. Takemura M, Sato K, Nishio M, Akiyama T, Umekawa H, Yoshida S (1999) Nucleolar protein B23.1 binds to retinoblastoma protein and synergistically stimulates DNA polymerase alpha activity. J Biochem 125(5):904–909PubMedGoogle Scholar
  102. Tamborini E, Della Torre G, Lavarino C, Azzarelli A, Carpinelli P, Pierotti MA, Pilotti S (2001) Analysis of the molecular species generated by MDM2 gene amplification in liposarcomas. Int J Cancer 92(6):790–796PubMedGoogle Scholar
  103. Tao W, Levine AJ (1999) Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2-mediated degradation of p53. Proc Natl Acad Sci USA 96:3077–3080PubMedGoogle Scholar
  104. Tokuyama Y, Horn HF, Kawamura K, Tarapore P, Fukasawa K (2001) Specific phosphorylation of nucleophosmin on Thr(199) by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication. J Biol Chem 276(24):21529–21537PubMedGoogle Scholar
  105. Valdez BC, Perlaky L, Henning D, Saijo Y, Chan PK, Busch H (1994) Identification of the nuclear and nucleolar localization signals of the protein p120. Interaction with translocation protein B23. J Biol Chem 269(38):23776–23783PubMedGoogle Scholar
  106. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303(5659):844–848PubMedGoogle Scholar
  107. Wang D, Baumann A, Szebeni A, Olson MO (1994) The nucleic acid binding activity of nucleolar protein B23.1 resides in its carboxyl-terminal end. J Biol Chem 269(49):30994–30998PubMedGoogle Scholar
  108. Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D (1999) Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1:20–26PubMedGoogle Scholar
  109. Weber JD, Jeffers JR, Rehg JE, Randle DH, Lozano G, Roussel MF, Sherr CJ, Zambetti GP (2000) p53-independent functions of the p19(ARF) tumor suppressor. Genes Dev 14(18):2358–2365PubMedGoogle Scholar
  110. Wu MH, Chang JH, Yung BY (2002a) Resistance to UV-induced cell-killing in nucleophosmin/B23 over-expressed NIH 3T3 fibroblasts: enhancement of DNA repair and up-regulation of PCNA in association with nucleophosmin/B23 over-expression. Carcinogenesis 23(1):93–100PubMedGoogle Scholar
  111. Wu MH, Chang JH, Chou CC, Yung BY (2002b) Involvement of nucleophosmin/B23 in the response of HeLa cells to UV irradiation. Int J Cancer 97(3):297–305PubMedGoogle Scholar
  112. Yadavilli S, Mayo LD, Higgins M, Lain S, Hegde V, Deutsch WA (2009) Ribosomal protein S3: A multi-functional protein that interacts with both p53 and MDM2 through its KH domain. DNA Repair (Amst) 8(10):1215–1224Google Scholar
  113. Yang Y, Ludwig RL, Jensen JP, Pierre SA, Medaglia MV, Davydov IV, Safiran YJ, Oberoi P, Kenten JH, Phillips AC, Weissman AM, Vousden KH (2005) Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 7(6):547–559PubMedGoogle Scholar
  114. Yu GW, Allen MD, Andreeva A, Fersht AR, Bycroft M (2006a) Solution structure of the C4 zinc finger domain of HDM2. Protein Sci 15(2):384–389PubMedGoogle Scholar
  115. Yu GW, Rudiger S, Veprintsev D, Freund S, Fernandez-Fernandez MR, Fersht AR (2006b) The central region of HDM2 provides a second binding site for p53. Proc Natl Acad Sci U S A 103(5):1227–1232PubMedGoogle Scholar
  116. Yung BY, Busch H, Chan PK (1985a) Translocation of nucleolar phosphoprotein B23 (37 kDa/pI 5.1) induced by selective inhibitors of ribosome synthesis. Biochim Biophys Acta 826(4):167–173PubMedGoogle Scholar
  117. Yung BY, Busch RK, Busch H, Mauger AB, Chan PK (1985b) Effects of actinomycin D analogs on nucleolar phosphoprotein B23 (37,000 daltons/pI 5.1). Biochem Pharmacol 34(22):4059–4063PubMedGoogle Scholar
  118. Zeller KI, Haggerty TJ, Barrett JF, Guo Q, Wonsey DR, Dang CV (2001) Characterization of nucleophosmin (B23) as a Myc target by scanning chromatin immunoprecipitation. J Biol Chem 276(51):48285–48291PubMedGoogle Scholar
  119. Zhang Y (2004) The ARF-B23 connection: implications for growth control and cancer treatment. Cell Cycle 3(3):259–262PubMedGoogle Scholar
  120. Zhang Y, Lu H (2009) Signaling to p53: ribosomal proteins find their way. Cancer Cell 16(5):369–377PubMedGoogle Scholar
  121. Zhang Y, Xiong Y (1999) Mutation in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol Cell 3:579–591PubMedGoogle Scholar
  122. Zhang Y, Xiong Y, Yarbrough WG (1998) ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92:725–734PubMedGoogle Scholar
  123. Zhang Y, Wolf GW, Bhat K, Jin A, Allio T, Burkhart WA, Xiong Y (2003) Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol Cell Biol 23(23):8902–8912PubMedGoogle Scholar
  124. Zhang J, Tomasini AJ, Mayer AN (2008) RBM19 is essential for preimplantation development in the mouse. BMC Dev Biol 8:115PubMedGoogle Scholar
  125. Zhu Y, Poyurovsky MV, Li Y, Biderman L, Stahl J, Jacq X, Prives C (2009) Ribosomal protein S7 is both a regulator and a substrate of MDM2. Mol Cell 35(3):316–326PubMedGoogle Scholar
  126. Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ, Roussel MF (1998) Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12:2424–2433PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Laura A. Tollini
    • 1
  • Rebecca A. Frum
    • 2
  • Yanping Zhang
    • 3
    • 4
  1. 1.Curriculum in Genetics and Molecular BiologyUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Department of Radiation OncologyUniversity of North Carolina at Chapel HillChapel HillUSA
  3. 3.Departments of Radiation Oncology and PharmacologyUniversity of North Carolina at Chapel HillChapel HillUSA
  4. 4.Lineberger Comprehensive Cancer CenterUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations