Skip to main content

Design of Broadband Amplifiers in Digital CMOS Technology

  • Chapter
  • First Online:
Fast Hopping Frequency Generation in Digital CMOS

Abstract

The frequency synthesizer of Fig. 2.24 uses a cascade of two single-sideband mixers to implement all fourteen center frequencies of MB-OFDM UWB. This frequency synthesizer has a similar structure to the signal path of a wideband transmitter, and therefore broadband amplifiers maybe required to boost the signal at different places. An optimized combination of mixers and broadband amplifiers is needed to implement this wideband frequency synthesizer, and can help to reduce the level of in-band spurious tones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holdenried C, Haslett J, Lynch M (2004) Analysis and design of HBT Cherry- Hooper amplifiers with emitter-follower feedback for optical communications. IEEE J Solid-State Circuits 39(11):1959–1967

    Google Scholar 

  2. Sackinger E, Fischer W (2000) A 3 GHz, 32 dB CMOS limiting amplifier for SONET OC-48 receivers. In: IEEE ISSCC digest of technical papers, pp 158–159, Feb 2000

    Google Scholar 

  3. Galal S, Razavi B (2003) 10-Gb/s limiting amplifier and laser/modulator driver in 0.18 \(\mu \)m CMOS technology. IEEE J Solid-State Circuits 38(12):2138–2146

    Google Scholar 

  4. Razavi B (2003) Design of integrated circuits for optical communications. McGraw- Hill, New York

    Google Scholar 

  5. Lee T (2004) The design of CMOS radio-frequency integrated circuits. Cambridge University Press, Cambridge

    Google Scholar 

  6. Kreithen A (1951) Neutralization of amplifiers. US Patent 2,542,087, 20 Feb 1951

    Google Scholar 

  7. Sackinger E, Fischer W (2000) A 3 GHz 32 dB CMOS limiting amplifier for sonnet oc-48 receivers. IEEE J Solid-State Circuits 35(12):1884–888

    Google Scholar 

  8. Mohan S, Hershenson M, Boyd S, Lee T (2000) Bandwidth extension in CMOS with optimized on-chip inductors. IEEE J Solid-State Circuits 35(3):346–355

    Google Scholar 

  9. Hara S, Tokumitsu T, Tanaka T, Aikawa M (1988) Broad-band monolithic microwave active inductor and its application tominiaturized wide-band amplifiers. IEEE Trans Microw Theory Tech 3(12):1920–1924

    Google Scholar 

  10. Thanachayanont A, Payne A (1996) VHF CMOS integrated active inductor. Electron Lett 32(11):999–1000

    Google Scholar 

  11. Hsiao C, Kuo C, Ho C, Chan Y (2002) Improved quality-factor of 0.18 \(\mu \)m CMOS active inductor by a feedback resistance design. IEEE Microwave Wirel Compon Lett 12(12):467–469

    Google Scholar 

  12. Thanachayanont A, Payne A (2000) CMOS floating active inductor and its applications to bandpass filter and oscillator designs. IEEE Proc Circuits Devices Syst 147(1):42–48

    Google Scholar 

  13. Cherry E, Hooper D (1963) The design of wide-band transistor feedback amplifiers. IEEE Proc 44(2):375–389

    Google Scholar 

  14. Holdenried C, Lynch M, Haslett J (2003) Modified CMOS cherry-hooper amplifiers with source follower feedback in 0.35 \(\mu \)m, technology. In: 29th european solid-state circuit conference, pp 553–556, Sept 2003

    Google Scholar 

  15. Abbott J, Plett C, Rogers J (2005) The design of wide-band transistor feedback amplifiers. In: Proceedings of the IEEE custom integrated circuits conference, 2005

    Google Scholar 

  16. von Buren G, Kromer C, Ellinger F, Huber A, Schmatz M, Jackel H (2006) A combined dynamic and static frequency divider for a 40 GHz PLL in 80 nm CMOS. IEEE ISSCC digest of technical papers, pp 2462–2471, Feb 2006

    Google Scholar 

  17. Kromer C, Sialm G, Berger C, Morf T, Schmatz M, Ellinger F, Erni D, Bona G-L, Jackel H (2005) A 100 mW 4\(\times \)10 Gb/s transceiver in 80 nm CMOS for high-density optical interconnects. IEEE J Solid-State Circuits 40(12):2667–2679

    Google Scholar 

  18. Fanori L, Liscidini A, Catello R (2010) 3.3 GHz DCO with a frequency resolution of 150 Hz for all-digital PLL. In: IEEE ISSCC digest of technical papers, pp 48–50, Feb 2010

    Google Scholar 

  19. Farazian M (2009) Fast hopping high-frequency carrier generation in digital CMOS technology. Dissertation, University of California

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Farazian .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farazian, M., Gudem, P.S., Larson, L.E. (2013). Design of Broadband Amplifiers in Digital CMOS Technology. In: Fast Hopping Frequency Generation in Digital CMOS. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0490-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0490-3_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0489-7

  • Online ISBN: 978-1-4614-0490-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics