Skip to main content

Abstract

This chapter reviews the basic theories of device simulation within the framework of TCAD. Figure 3.1 shows a practical design of a device simulator of 3D TCAD capability with various modules. One may regard the drift-diffusion (DD) equation module as central building block of a 3D TCAD device simulator. Optionally, additional modules to perform quantum mechanical calculations and optical modes computation can be built around the main DD module to enhance the application of the simulation program. This is necessary for special applications of 3D TCAD such as nano-scale MOSFET, laser diodes and integrated photonic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.M.Sze. Physics of semiconductor devices, 2nd edition. John Wiley & Sons, 1981.

    Google Scholar 

  2. Energy transport numerical simulation of graded AlGaAs/GaAs heterojunction bipolar transistors. Azoff, E.M. pp.609-616, s.l. : IEEE Trans. ED, 1989, Vol. 36.

    Google Scholar 

  3. Close-form method for solving the steady-state generalised energy momentum conservation equations. Azoff, E.M. 25–30, s.l. : COMPEL, 1987, Vol. 6.

    Google Scholar 

  4. Smith, R. A. Semiconductors 2nd edn. Cambridge, England : Cambridge University Press, 1978.

    Google Scholar 

  5. D. Bednarczyk and J. Bednarczyk. 64A, 409, s.l. : Phys. Letters, 1978.

    Google Scholar 

  6. Use of Fermi statistics in two dimensional numerical simulation of heterojunction devices. Z.-M. Li, S.P. McAlister and C.M. Hurd,. 408, s.l. : Semicond. Sci.Techn., 1990, Vol. 5.

    Google Scholar 

  7. Physical modeling of degenerately doped compound semiconductors for high-performance HBT design. James C. Li, Marko Sokolich, Tahir Hussain, Peter M. Asbeck. 1440C1449, s.l. : Solid-State Electronics, 2006, Vol. 50.

    Google Scholar 

  8. A physically based mobility model for numerical simulation of non-planar devices. C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi. no.11 pp.1164-1171, s.l. : IEEE CAD, Nov.1988, Vol. 7.

    Google Scholar 

  9. Selberherr, S. Analysis and simulation of semiconductor devices. New York : Springer-Verlag, 1984.

    Google Scholar 

  10. Ionization rates for electrons and holes in silicon. Chynoweth, A.G. p. 1537, s.l. : Phys., Rev., 1958, Phys. Rev, Vol. 109.

    Google Scholar 

  11. Selberherr, S. Analysis and simulation of semiconductor devices. Wien-New York : Springer-Verlag, 1984.

    Google Scholar 

  12. Sze, C.R. Crowell and S.M. no.6 pp. 242–244, s.l. : Appl. Phys. Lett.,, 1966, Vol. 9.

    Google Scholar 

  13. Blokhintsev, D.I. Quantum mechanics. Dordrecht-Holland : D. Reidel Publishing Company, 1964.

    Google Scholar 

  14. Efficient band-structure calculation of strained quantum-wells. Chuang, S.L. B, 43, 9649–9661, s.l. : Phys. Rev., 1991.

    Google Scholar 

  15. A model for GRIN-SCH-SQW diode lasers. S.R. Chinn, P.S. Zory and A.R. Reisinger. QE-24, 2191–2214, s.l. : IEEE J. Quantum Electron., 1988.

    Google Scholar 

  16. Threshold current of single quantum well lasers: The role of the confining layers. J. Nagle, S. Hersee, M. Krakowski, T. Well, and C. Welsbuch. No.20, 1325, s.l. : Appl.. Lett., 1986, Vol. 49.

    Google Scholar 

  17. Auger recombination in strained and unstrained InGaAs/InGaAsP multiple quantum well lasers. G. Fuchs, C. Schiedel, A. Hangleiter, V. Harle, and F. Scholz,. 396–398, s.l. : Appl. Phys. Lett., 1993, Vol. 62.

    Google Scholar 

  18. Band mixing effects on quantum well gain. S. Colak, R. Eppenga, and M.F.H. Schuurmans. QE-23, 960–967, s.l. : IEEE J. PilkuhnQuantum Well Electron, 1987.

    Google Scholar 

  19. New k.p thoery for GaAs/Ga1−xAlxAs-type quantum wells. R. Eppenga, M.F.H. Schuurmans, and S. Colak. 1554–1564, s.l. : Phys. Rev.,, 1987, Vol. 36.

    Google Scholar 

  20. Superlattice band structure in hte envelope-function approximation. Bastard, G. 5693–5697, s.l. : Phys. Rev.,, 1981, Vol. 24.

    Google Scholar 

  21. L.C. Andreani, A. Pasquarello, and F. Bassani. Phys. Rev., s.l. : Phys. Rev., 1987.

    Google Scholar 

  22. Chuang, S. L. Physics of Optoelectronic Devices. New York : Wiley,, 1995.

    Google Scholar 

  23. F.Wooten. Optical properties of solids. New York and London : Academic Press, 1972.

    Google Scholar 

  24. Anisotropy and broadening of optical gain in a GaAs/AlGaAs multiquantum-well laser. M. Yamada, S. Ogita, M. Yamagishi, and K. Tabata. QE-21, 640–645, s.l. : IEEE. J. Quantum, 1985.

    Google Scholar 

  25. Systematics of laser Ishigurooperation in GaAs/AlGaAs multiquantum well heterostructures. E. Zielinski, H. Schweizer, S. Hausser, R. Stuber, M. H. Pilkuhn, and G.Weimann. QE-23, 969–976, s.l. : J. Quantum Electron., 1987.

    Google Scholar 

  26. Optical gain and loss processes in GaInAs/InP MQW laser structure. E. Zielinski, F. Keppler, S. Hausser, M. H. Pilkuhn, and R. Sauer and W.T.Tsang. QE-25, 1407–1416, s.l. : J.Quantum Electron., 1989.

    Google Scholar 

  27. Corrections to the expression of gain in GaAs. R.H. Yan, S.W. Corzine, L.A. Coldren, and I. Suemune. QE-26, 213–216, s.l. : IEEE J. Quantum Electron., 1990.

    Google Scholar 

  28. Optical Gain of Strained Wurtzite GaN QuantumWell Lasers. Chuang, Shun Lien. No.10 p1791, s.l. : IEEE JOURNAL OF QUANTUM ELECTRONICS, OCTOBER 1996, Vol. 32.

    Google Scholar 

  29. k.p method for strained wurtzite semiconductors. Chang, S. L. Chuang and C. S. pp. 2491–2504, s.l. : Phys. Rev. B, July, 1996., Vol. 54.

    Google Scholar 

  30. Rigorous thermodynamic treatment of heat generation and conduction in semiconductor Transmodeling. Wachutka, G.K. CAD-9, 1141–1149, s.l. : IEEE Trans., 1990.

    Google Scholar 

  31. Electrical current in solids with position dependent band structure. Vilet, A. Marshak and K. van. 21, 417–427, s.l. : Solid State Electron.,, 1978.

    Google Scholar 

  32. Thermal effects on the characteristics of AlGaAs/GaAs heterojunction bipolar transistors using two dimensional numerical simulation. L. Liou, J. Ebel, and C Huang. ED-40, 35–43, s.l. : IEEE Trans. ED, 1993.

    Google Scholar 

  33. Semiconductor current flow equations (diffusion and degeneracy). R. Stratton. ED-19, 1288–1292, s.l. : IEEE., ED, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Li, S., Fu, Y. (2012). Advanced Theory of TCAD Device Simulation. In: 3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0481-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0481-1_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0480-4

  • Online ISBN: 978-1-4614-0481-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics