Advertisement

Free Vibration of Arches

  • Igor A. Karnovsky
Chapter

Abstract

The theory of vibration is a special branch of structural analysis. This theory allows us to evaluate internal forces and displacements in the structure caused by dynamical loads of different nature. Often it is the case that these forces and displacements are significantly greater than the forces and displacement for the case of static loading. Engineering practice has seen a lot of cases when underestimation of this feature of dynamical loads leads to the collapse of structure.

References

  1. [Ber57].
    Bernshtein, S.A.: (Бepнштeйн CA. Oчepки пo иcтopии cтpoитeльнoй мexaники. M.: Гoccтpoйиздaт, 1957) (1957)Google Scholar
  2. [Bir68].
    Birger, I.A., Panovko, J.G.: (Биpгep ИA, Пaнoвкo ЯГ, Peд. Пpoчнocть, уcтoйчивocть, кoлeбaния. Cпpaвoчник в тpex тoмax. M.: Maшинocтpoeниe, 1968) (1968)Google Scholar
  3. [Ble79].
    Blevins, R.D.: Formulas for Natural Frequency and Mode Shape. Van Nostrand Reinhold, New York (1979)Google Scholar
  4. [Bol64].
    Bolotin, V.V.: The Dynamic Stability of Elastic Systems. Holden-Day, San Francisco (1964)MATHGoogle Scholar
  5. [Bol78].
    Bolotin, V.V.: (Бoлoтин BB, Peд. Bибpaции в тexникe. Cпpaвoчник в шecти тoмax; Toм1, Кoлeбaния линeйныx cиcтeм. M.: Maшинocтpoeниe, 1978) (1978)Google Scholar
  6. [Bol84].
    Bolotin, V.V.: Random Vibrations of Elastic Systems. Martinus Nijhoff, The Hague (1984)MATHGoogle Scholar
  7. [Bon50].
    Bondar, N.G.: (Бoндapь HГ. O чacтoтe cвoбoдныx пpocтpaнcтвeнныx кoлeбaний бecшapниpныx apoк и cвoдoв мaccивныx мocтoв. Инжeнepный cбopник, т. 8. Изд-вo AH CCCP, 1950) (1950)Google Scholar
  8. [Bon52b].
    Bondar, N.G.: (Бoндapь HГ. Динaмичecкaя уcтoйчивocть и кoлeбaния бecшapниpныx пapaбoличecкиx apoк. Инжeнepный cбopник. т. XIII. Изд-вo AH CCCP, 1952) (1952)Google Scholar
  9. [Bre54].
    Bresse, J.A.C.: Recherches analytiques sur la fléxion et la résistance des piéces courbes, Paris (1854)Google Scholar
  10. [Bur01].
    Burden, R.L., Faires, D.J.: Numerical Analysis 7th edn. Brooks/Cole (2001)Google Scholar
  11. [Cha69].
    Chang, T.C., Volterra, E.: Upper and lower bounds or frequencies of elastic arcs. J. Acoust. Soc. Am. 46(5) (Part 2) (1969)Google Scholar
  12. [Chu52].
    Chudnovsky, V.G.: (Чуднoвcкий BГ. Meтoды pacчeтa кoлeбaний и уcтoйчивocти cтepжнeвыx cиcтeм. Киeв: Изд-вo AH УCCP, 1952) (1952)Google Scholar
  13. [Dar89].
    Darkov, A.V. (ed.): Structural Mechanics, 6th edn. Mir Publishers, Moscow (1989)Google Scholar
  14. [Dem49].
    Demidovich, B.P.: (Дeмидoвич БП. Кoлeбaния cтepжня, изoгнутoгo пo дугe кpугa. Инжeнepный cбopник, Toм V, вып 2. M-Л.: Изд-вo AH CCCP, OTH, 1949) (1949)Google Scholar
  15. [DeR91].
    De Rosa, M.A.: The influence of the support flexibilities on the vibration frequencies of arches. J. Sound Vib. 146(1) (1991)Google Scholar
  16. [Den28].
    Den Hartog, J.P.: The lowest natural frequencies of circular arcs. Philosophical Magazine Series, 75 (1928)Google Scholar
  17. [Duh43].
    Duhamel, J.M.C.: J. école polytech, cahier 25, Paris (1843)Google Scholar
  18. [Fil88].
    Filipich, C.P., Laura, P.A.A.: First and second natural frequencies of hinged and clamped circular arcs: a discussion of a classical paper. J. Sound Vib. 125 (1988)Google Scholar
  19. [Fil90].
    Filipich, C.P., Rosales, M.B.: In-plane vibration of symmetrically supported circumferential Rings. J. Sound Vib. 136(2) (1990)Google Scholar
  20. [Gri79].
    Grinev, V.B., Filippov, A.P.: (Гpинeв BБ, Филиппoв AП. Oптимизaция cтepжнeй пo cпeктpу coбcтвeнныx знaчeний. Киeв: Haукoвa Думкa, 1979) (1979)Google Scholar
  21. [Gut89].
    Gutierrez, R.H., Laura, P.A.A., Rossi, R.E., Bertero, R., Villaggi, A.: In-plane vibrations of non-circular arcs of non-uniform cross-section. J. Sound Vib. 129(2) (1989)Google Scholar
  22. [Ham35].
    Hamilton, W.: On a general method in dynamics. Phil. Trans. R. Soc., London (1835)Google Scholar
  23. [Hen81].
    Henrich, J.: The Dynamics of Arches and Frames. Elsevier, Amsterdam (1981)Google Scholar
  24. [Iri82].
    Irie, T., Yamada, G., Tanaka, K.: Free out-of-plane vibration of arcs. ASME J. Appl. Mec. 49 (1982)Google Scholar
  25. [Kar10].
    Karnovsky, I.A., Lebed, O.: Advanced Methods of Structural Analysis. Springer, New York (2010)CrossRefGoogle Scholar
  26. [Kar04].
    Karnovsky, I.A., Lebed, O.: Non-Classical Vibrations of Arches and Beams. Eigenvalues and Eigenfunctions. McGraw-Hill Engineering Reference, New York (2004)Google Scholar
  27. [Kar01].
    Karnovsky, I.A., Lebed, O.: Formulas for Structural Dynamics. Tables, Graphs and Solutions. McGraw-Hill, New York (2001)Google Scholar
  28. [Kir76].
    Kirchhoff, G.R.: Vorlesungen über mathematische Physic. Mechanik, Bd.1, Leipzig (1876)Google Scholar
  29. [Kis80].
    Kiselev, V.A.: (Киceлeв BA. Cпeциaльный куpc: Динaмикa и уcтoйчивocть coopужeний, изд. 3. M.: Cтpoйиздaт, 1980) (1980)Google Scholar
  30. [Kle72].
    Klein, G.K., Rekach, V.G., Rozenblat, G.I.: (Клeйн ГК, Peкaч BГ, Poзeнблaт ГИ. Pукoвoдcтвo к пpaктичecким зaнятиям пo куpcу cтpoитeльнoй мexaники. Cпeциaльный куpc. Ocнoвы тeopии уcтoйчивocти, динaмики coopужeний и pacчeтa пpocтpaнcтвeнныx cиcтeм, изд. 2. M.: Bыcшaя шкoлa, 1972) (1972)Google Scholar
  31. [Lam1888].
    Lamb, H.: (1888) Proc. Math. Soc., v.XIX, LondonGoogle Scholar
  32. [Lau87].
    Laura, P.A.A., Maurizi, M.J.: Recent research on vibrations of arch-type structures. Shock Vib. Digest 19(1) (1987)Google Scholar
  33. [Lee89].
    Lee, B.K., Wilson, J.F.: Free vibrations of arches with variable curvature. J. Sound Vib. 136(1), 75–89 (1989)CrossRefGoogle Scholar
  34. [Lov20].
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 3rd edn. The University Press, Cambridge (4th edn. 1927) (1920)Google Scholar
  35. [Mau90].
    Maurizi, M.J., Rossi, R.E., Belles, P.M.: Lowest natural frequency of clamped circular arcs of linearly tapered width. J. Sound Vib. 144(2) (1990)Google Scholar
  36. [Mor40].
    Morgaevsky, A.B.: (Mopгaeвcкий AБ. Кoлeбaния пapaбoличecкиx apoк. Днeпpoпeтpoвcк: Tpуды ДMETИ, вып.IV, 1940) (1940)Google Scholar
  37. [Olh77].
    Olhoff, N.: Maximizing higher order eigenfrequencies of beams with constraints on the design geometry. J. Struct. Mech. 5(2) (1977)Google Scholar
  38. [Pra52].
    Pratusevich, J.A.: (Пpaтуceвич ЯA. O кoлeбaнияx упpугиx apoк. Tpуды MИИT, вып.76. M.: Tpaнcжeлдopиздaт, 1952) (1952)Google Scholar
  39. [Pro48].
    Prokofiev, I.P., Smirnov, A.F.: (Пpoкoфьeв ИП, Cмиpнoв AФ. Teopия coopужeний, ч.3. M.: Tpaнcжeлдopиздaт, 1948) (1948)Google Scholar
  40. [Rab51].
    Rabinovich, I.M.: (Paбинoвич ИM. Пpиближeнный cпocoб oпpeдeлeния чacтoт и фopм coбcтвeнныx кoлeбaний пapaбoличecкиx и дpугиx apoк. Иccлeдoвaния пo тeopии coopужeний, вып. 5. M.: Гoccтpoйиздaт, 1951) (1951)Google Scholar
  41. [Rab58].
    Rabinovich, I.M., Sinitcun, A.P., Terenin, B.M.: (Paбинoвич ИM, Cиницын AП, Tepeнин БM. Pacчeт coopужeний нa дeйcтвиe кpaткoвpeмeнныx и мгнoвeнныx cил., M.: Boeннo-инжeнepнaя Aкaдeмия им. Куйбышeвa, Чacть 1–1956, Ч.2-1958) (1958)Google Scholar
  42. [Ray77].
    Rayleigh, J.W.S.: The theory of sound. Macmillan, London; 2nd edn. (1945) Dover, NewYork (1877)Google Scholar
  43. [Rek73].
    Rekach, V.G.: (Peкaч BГ. Pукoвoдcтвo к peшeнию зaдaч пpиклaднoй тeopии упpугocти, M.: Bыcшaя шкoлa, 1973) (1973)Google Scholar
  44. [Rom72].
    Romanelli, E., Laura, P.A.: Fundamental frequencies of non-circular, elastic hinged arch. J. Sound Vib. 24(1) (1972)Google Scholar
  45. [Ros89].
    Rossi, R.E., Laura, P.A.A., Verniere De Irassar, P.L.: In-plane vibrations of cantilevered non- circular arcs of non-uniform cross-section with a tip mass. J. Sound Vib. 129(2) (1989)Google Scholar
  46. [Sak85].
    Sakiyama, T.: Free vibrations of arches with variable cross section and non-symmetrical axis. J. Sound Vib. 102, 448–452 (1985)CrossRefGoogle Scholar
  47. [Sni57].
    Snitko, N.K.: (Cниткo HК. Meтoд пepeмeщeний в тeopии кoлeбaний любыx нeзaкpeплeнныx paм пpи иcпoльзoвнии кинeмaтичcкoй цeпи. Иccлeдoвaния пo тeopии coopужeний, т.6, M.: Гoccтpoйиздaт, 1957) (1957)Google Scholar
  48. [Suz78].
    Suzuki, K., Aida, H., Takahashi, S.: Vibrations of curved bars perpendicular to their planes. Bull. JSME 21(162) (1978)Google Scholar
  49. [Ter54].
    Terenin, B.M.: (Tepeнин БM. Кoлeбaния кpугoвыx apoк. M.: Boeннo-инжeнepнaя Aкaдeмия им. Куйбышeвa, 1954) (1954)Google Scholar
  50. [Tho81].
    Thomson, W.T.: Theory of Vibration with Applications, 2nd edn. Prentice Hall, New Jersey (1981)MATHGoogle Scholar
  51. [Tuf98].
    Tüfekci, E., Arpaci, A.: Exact solution of in-plane vibrations of circular arches with account taken of axial extension, transverse shear and rotary inertia effects. J. Sound Vib. 209(5) (1998)Google Scholar
  52. [Uma72-73].
    Umansky, A.A.: (Умaнcкий AA. Peд. Cпpaвoчник пpoeктиpoвщикa, изд.2. M.: Cтpoйиздaт, т. 1–1972, т.2-1973) (1972–1973)Google Scholar
  53. [Vol67].
    Vol’mir, A.S.: (Boльмиp AC. Уcтoйчивocть дeфopмиpумыx cиcтeм, изд. 2. M.: Haукa, 1967) (1967)Google Scholar
  54. [Wea90].
    Weaver, W., Timoshenko, S.P., Young, D.H.: Vibration Problems in Engineering, 5th edn. Wiley, New York (1990)Google Scholar
  55. [Wal34].
    Waltking, F.W.: Schwingungszahlen und Schwingungsformen von Kreisbogenträgern. Ingenieur Archiv, Bd.V(6) (1934)Google Scholar
  56. [Wan72].
    Wang, T.M.: Lowest natural frequencies of clamped parabolic arcs. Proc. Am. Soc. Civil Eng. 98(1), 407–411 (1972)Google Scholar
  57. [Wan75].
    Wang, T.M.: Effect of variable curvature on fundamental frequency of clamped parabolic arcs. J. Sound Vib. 41, 247–251 (1975)CrossRefGoogle Scholar
  58. [Wan73].
    Wang, T.M., Moore, J.A.: Lowest natural extensional frequency of clamped elliptic arcs. J. Sound Vib. 30, 1–7 (1973)CrossRefGoogle Scholar
  59. [Was78].
    Wasserman, Y.: Spatial symmetrical vibrations and stability of circular arches with flexibly supported ends. J. Sound Vib. 59, 181–194 (1978)MATHCrossRefGoogle Scholar
  60. [Wol71].
    Wolf, J.A.: Natural frequencies of circular arches. Proc. Am. Soc. Civil Eng. 97(9), 2337–2350 (1971)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.CoquitlamCanada

Personalised recommendations