Skip to main content

A Formulation and Numerical Scheme for Fractional Optimal Control of Cylindrical Structures Subjected to General Initial Conditions

  • Chapter
  • First Online:
Fractional Dynamics and Control

Abstract

A general formulation and numerical scheme for Fractional Optimal Control (FOC) of cylindrical structures are presented in this chapter. Examples of solid cylinder and hollow cylinder with axial symmetry are discussed to demonstrate the method. The fractional derivatives (FDs) are expressed in the form of Caputo derivatives. The performance index of the FOC problem is considered as a function of both the state and the control variables, and the dynamic constraint is expressed by a partial fractional differential equation. The method of separation of variables is employed to find the solution of the problem, and the eigenfunction approach is used to decouple the equations. Convergence studies are conducted to determine the number of eigenfunctions in the radial and axial directions. The results also converge as the time step decreases. Various orders of FDs are analyzed and the numerical results converge toward the analytical solutions as the order of derivative goes toward the integer value of 1, and therefore verifies the numerical scheme. Parameter studies of problems with different initial conditions indicate that the method applies to systems that are subjected to general initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal OP (2008a) A quadratic numerical scheme for fractional optimal control problems. ASME J Dynamic Syst, Measurement, Control 130(1):011010.1–011010.6

    Google Scholar 

  2. Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York

    MATH  Google Scholar 

  3. Magin RL (2006) Fractional calculus in bioengineering. Begell House, Connecticut

    Google Scholar 

  4. Bagley RL, Calico RA (1991) Fractional order state equations for the control of viscoelastically damped structures. J Guid Control Dyn 14(2):304–311

    Article  Google Scholar 

  5. Koeller RC (1984) Application of fractional calculus to the theory of viscoelasticity. J Appl Mech 51(2):299–307

    Article  MathSciNet  MATH  Google Scholar 

  6. Koeller RC (1986) Polynomial operators, Stieltjes convolution, and fractional calculus in hereditary mechanics. Acta Mechanica 58(3–4):251–264

    Article  MathSciNet  MATH  Google Scholar 

  7. Skaar SB, Michel AN, Miller RK (1988) Stability of viscoelastic control systems. IEEE Trans Automatic Control 33(4):348–357

    Article  MathSciNet  MATH  Google Scholar 

  8. Oustaloup A, Levron F, Mathieu B, Nanot FM (2000) Frequency-band complex noninteger differentiator: Characterization and synthesis. IEEE Trans Circ Syst I 47(1):25–39

    Article  Google Scholar 

  9. Xue D, Chen YQ (2002) A comparative introduction of four fractional order controllers. In: Proceedings of the fourth IEEE world congress on intelligent control and automation (WCICA02), IEEE 4:3228–3235

    Google Scholar 

  10. Manabe S (2003) Early development of fractional order control. In: Proceedings of the ASME international design engineering technical conference, Chicago, IL, Paper No. DETC2003/VIB-48370

    Google Scholar 

  11. Monje CA, Calderón JA, Vinagre BM, Chen YQ and Feliu V (2004) On fractional PI λ controllers: some tuning rules for robustness to plant uncertainties. Nonlinear Dyn 38(1–2):369–381

    Article  MATH  Google Scholar 

  12. Ichise M, Nagayanagi Y, Kojima T (1971) An analog simulation of non-integer order transfer functions for analysis of electrode processes. J Electroanal Chem Interfacial Electrochem 33(2):253–265

    Google Scholar 

  13. Sun HH, Onaral B, Tsao Y (1984a) Application of positive reality principle to metal electrode linear polarization phenomena. IEEE Trans Biomed Eng 31(10):664–674

    Article  Google Scholar 

  14. Sun HH, Abdelwahab AA, Onaral B (1984b) Linear approximation of transfer function with a pole of fractional power. IEEE Trans Automatic Control 29(5):441–444

    Article  MATH  Google Scholar 

  15. Mandelbrot B (1967) Some noises with 1/f spectrum, a bridge between direct current and white noise. IEEE Trans Info Theory 13(2):289–298

    Article  MATH  Google Scholar 

  16. Hartley TT, Lorenzo CF, Qammar HK (1995) Chaos in a fractional order Chua’s system. IEEE Trans Circuits Syst: Part I: Fund Theory Appl 42(8):485–490

    Article  Google Scholar 

  17. Hartley TT, Lorenzo CF (2002) Dynamics and control of initialized fractional-order systems. Nonlinear Dyn 29(1–4):201–233

    Article  MathSciNet  MATH  Google Scholar 

  18. Tricaud C, Chen YQ (2010a) An approximate method for numerically solving fractional order optimal control problems of general form. Comput Math Appl 59(5):1644–1655

    Article  MathSciNet  MATH  Google Scholar 

  19. Tricaud C, Chen YQ (2010b) Time-optimal control of systems with fractional dynamics. Int J Diff Equations. Article ID 461048. doi:10.1155/2010/461048

    Google Scholar 

  20. Machado JAT, Silva MF, Barbosa RF, et al (2010) Some applications of fractional calculus in engineering. Math Prob Eng: Article ID 639801, doi: 10.1155/2010/639801

    Google Scholar 

  21. Zamani M, Karimi-Ghartemani M, Sadati N, Parniani N (2007) FOPID controller design for robust performance using particle swarm optimization. J Fractional Calculus Appl Anal 10(2):169–188

    MATH  Google Scholar 

  22. Agrawal OP (1989) General formulation for the numerical solution of optimal control problems. Int J Control 50(2):627–638

    Article  MATH  Google Scholar 

  23. Tangpong XW, Agrawal OP (2009) Fractional optimal control of a continum system. ASME J Vibration Acoustics 131(2):021012

    Article  Google Scholar 

  24. Agrawal OP (2004) A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn 38(1–2):323–337

    Article  MATH  Google Scholar 

  25. Agrawal OP (2006) A formulation and numerical scheme for fractional optimal control problems. J Vibration Control 14(9–10):1291–1299

    Google Scholar 

  26. Frederico GSF, Torres DFM (2006) Noethers theorem for fractional optimal control problems. In: Proceedings of the 2nd IFAC workshop on fractional differentiation and its applications, vol 2. Porto, Portugal, pp 142–147, July 19–21, 2006

    Google Scholar 

  27. Frederico GSF, Torres DFM (2008a) Fractional conservation laws in optimal control theory. Nonlinear Dyn 53(3):215–222

    Article  MathSciNet  MATH  Google Scholar 

  28. Frederico GSF, Torres DFM (2008b) Fractional optimal control in the sense of caputo and the fractional noethers theorem. Int Math Forum 3(10):479–493

    MathSciNet  MATH  Google Scholar 

  29. Agrawal OP, Baleanu D (2007) A hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. J Vibration Control 13(9–10):1269–1281

    Article  MathSciNet  MATH  Google Scholar 

  30. Baleanu D, Defterli O, Agrawal OP (2009) A central difference numerical scheme for fractional optimal control problems. J Vibration Control 15(4):583–597

    Article  MathSciNet  Google Scholar 

  31. Jelicic DZ, Petrovacki N (2009) Optimality conditions and a solution scheme for fractional optimal control problems. Struct Multidisciplinary Opt 38(6):571–581

    Article  MathSciNet  Google Scholar 

  32. Agrawal OP (2008b) Fractional optimal control of a distributed system using eigenfunctions. ASME J Comput Nonlinear Dyn 3(2):021204

    Article  Google Scholar 

  33. Ozdemir N, Agrawal OP, Iskender BB, Karadeniz D (2009a) Fractional optimal control of a 2-dimensional distributed system using eigenfunctions. Nonlinear Dyn 55(3):251–260

    Article  MathSciNet  Google Scholar 

  34. Ozdemir N, Agrawal OP, Karadeniz D, Iskender BB (2009b) Fractional optimal control problem of an axis-symmetric diffusion-wave propagation. Physica Scriptica T136:014024 (5pp)

    Google Scholar 

  35. Ozdemir N, Karadeniz D, Iskender BB (2009c) Fractional optimal control problem of a distributed system in cylindrical coordinates. Phys Lett A 373(2):221–226

    Article  MathSciNet  Google Scholar 

  36. Ozdemir N, Agrawal OP, Iskender BB, Karadeniz D (2009d) Analysis of an axis-symmetric fractional diffusion-wave problem. J Phys A: Math Theo 42:355208 (10pp)

    Google Scholar 

  37. Povstenko Y (2008) Time-fractional radial diffusion in a sphere. Nonlinear Dyn 53(1–2):55–65

    Article  MathSciNet  MATH  Google Scholar 

  38. Qi H, Liu J (2009) Time-fractional radial diffusion in hollow geometries. Meccanica, doi: 10.1007/s11012–009–9275–2

    Google Scholar 

  39. Hasan MM, Tangpong XW, Agrawal OP (2011) Fractional optimal control of distributed systems in spherical and cylindrical coordinates. J Vibration Control, in press

    Google Scholar 

Download references

Acknowledgment

The authors Md. Hasan and X.W. Tangpong greatly acknowledge the support of ND EPSCoR, grant # FAR0017485.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. W. Tangpong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hasan, M.M., Tangpong, X.W., Agrawal, O.P. (2012). A Formulation and Numerical Scheme for Fractional Optimal Control of Cylindrical Structures Subjected to General Initial Conditions. In: Baleanu, D., Machado, J., Luo, A. (eds) Fractional Dynamics and Control. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0457-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0457-6_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0456-9

  • Online ISBN: 978-1-4614-0457-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics