Skip to main content

Characteristics Diagnosis of Nonlinear Dynamical Systems

  • Chapter
  • First Online:
Dynamical Systems and Methods
  • 1270 Accesses

Abstract

This chapter is on the updated methodologies of diagnosing characteristics of nonlinear dynamic systems. The widely used and most applicable methods and approaches in characterizing the nonlinear behaviors of the systems are reviewed briefly. Characteristics of Lyapunov exponents and recently developed periodicity ratio approach are described in detail and compared. The applicability and efficiency of the approaches are presented and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gollub JP, Baker GL (1996) Chaotic dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  2. Alligood KT, Sauer T, Yorke JA (1997) Chaos: an introduction to dynamical systems. Springer, New York

    Google Scholar 

  3. Devaney RL (2003) An introduction to chaotic dynamical systems, 2nd edn. Westview, Boulder

    MATH  Google Scholar 

  4. Valsakumar MC, Satyanarayana SVM, Sridhar V (1997) Signature of chaos in power spectrum. Pramana-J Phys 48:69–85

    Article  Google Scholar 

  5. Peitgen HO, Richter PH (1986) The beauty of fractals: images of complex dynamical systems. Springer, Berlin

    Book  MATH  Google Scholar 

  6. Peitgen HO, Saupe D (1988) The science of fractal images. Springer, New York

    MATH  Google Scholar 

  7. Lauwerier H (1991) Fractals. Princeton University Press, Princeton

    MATH  Google Scholar 

  8. Kumar A (2003) Chaos, fractals and self-organisation, new perspectives on complexity in nature. National Book Trust, New Delhi

    Google Scholar 

  9. Zaslavsky GM (2005) Hamiltonian chaos and fractional dynamics. Oxford University Press, New York

    MATH  Google Scholar 

  10. Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, New York

    MATH  Google Scholar 

  11. Nayfeh AH, Balachandran B (2004) Applied nonlinear dynamics: analytical, computational, and experimental methods non-linear oscillation. Wiley, New York

    Google Scholar 

  12. Strogatz S (2000) Nonlinear dynamics and chaos. Perseus, Cambridge

    Google Scholar 

  13. Kolmogorov AN (1941) Local structure of turbulence in an incompressible fluid for very large Reynolds number. Dokl Akad Nauk SSSR 30(4):301–305

    Google Scholar 

  14. Kolmogorov AN (1941) On degeneration of isotropic turbulence in an incompressible viscous liqui. Dokl Akad Nauk SSSR 31(6):538–540

    MATH  Google Scholar 

  15. Kolmogorov AN (1954) Preservation of conditionally periodic movements with small change in the Hamiltonian functio. Dokl Akad Nauk SSSR 98:527–530

    MathSciNet  MATH  Google Scholar 

  16. William FB (2006) Topology and its applications. Wiley, Hoboken

    MATH  Google Scholar 

  17. Qian B, Rasheed K (2004) Hurst exponent and financial market predictability. In: IASTED conference on “financial engineering and applications”, Cambridge pp 203–209

    Google Scholar 

  18. Tufillaro AR (1992) An experimental approach to nonlinear dynamics and chaos. Addison-Wesley, New York

    MATH  Google Scholar 

  19. Hristu-Varsakelis D, Kyrtsou C (2008) Evidence for nonlinear asymmetric causality in US inflation, metal and stock returns. Discrete Dyn Nat Soc 2008. Article ID 138547

    Google Scholar 

  20. Sprott J (2003) Chaos and time-series analysis. Oxford University Press, Oxford/New York

    MATH  Google Scholar 

  21. Choi JJ, O’Keefe KH, Baruah PK (1992) Nonlinear system diagnosis using neural networks and fuzzy logic. In: 1992 IEEE international conference, pp 813–820. Nice, France

    Google Scholar 

  22. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Physica D 16(3):285–317

    Article  MathSciNet  MATH  Google Scholar 

  23. Parks PC (1992) Lyapunov’s stability theory – 100 years on. IMA J Math Control I 9:275–303

    Article  MathSciNet  MATH  Google Scholar 

  24. Dai L, Singh MC (1997) Diagnosis of periodic and chaotic responses in vibratory systems. J Acoust Soc Am 102(6):3361–3371

    Article  Google Scholar 

  25. Li TY, Yorke JA (1975) Period three implies chaos. Am Math Mon 82:985–992

    Article  MathSciNet  MATH  Google Scholar 

  26. May R (1976) Simple mathematical models with very complicated dynamics. Nature 261(5560):459–467

    Article  Google Scholar 

  27. Mandelbrot BB (1982) The fractal geometry of nature. W.H. Freeman, San Francisco

    MATH  Google Scholar 

  28. Briggs J (1992) Fractals: the patterns of chaos. Thames and Hudson, London

    Google Scholar 

  29. Lakshmanan M, Rajasekar S (2003) Nonlinear dynamics: integrability, chaos, and patterns. Springer, New York

    MATH  Google Scholar 

  30. Rong H, Meng G, Wang X, Xu W, Fang T (2002) Invariant measures and lyapunov-exponents for stochastic Mathieu system. Nonlinear Dyn 30:313–321

    Article  MathSciNet  MATH  Google Scholar 

  31. Shahverdian AY, Apkarian AV (2007) A difference characteristic for one-dimensional deterministic systems. Commun Nonlinear Sci Numer Simul 12(3):233–242

    Article  MathSciNet  MATH  Google Scholar 

  32. Ueda Y (1980) Steady motions exhibited by Duffing’s equations: a picture book of regular and chaotic motions. In: Holmes PJ (ed) New approaches to nonlinear problems in dynamics. Society for Industrial and Applied Mathematics, Philadelphia, pp 311–322

    Google Scholar 

  33. Dai L (2008) Nonlinear dynamics of piecewise constant systems and implementation of piecewise constant arguments. World Scientific, Singapore

    Book  MATH  Google Scholar 

  34. Zhang M, Yang J (2007) Bifurcations and chaos in Duffing’s equation. Acta Math Appl Sin 23(4):665–684

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dai, L., Han, L. (2012). Characteristics Diagnosis of Nonlinear Dynamical Systems. In: Luo, A., Machado, J., Baleanu, D. (eds) Dynamical Systems and Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0454-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0454-5_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0453-8

  • Online ISBN: 978-1-4614-0454-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics