Advertisement

Brain Structures and Consciousness

Chapter

Abstract

This chapter introduces the problem of localization of mental functions within the brain. According to recent evidence mental functions and consciousness are related to specific brain structures, but at the same time there is evidence that mental functions and consciousness are related to the binding of diffuse and synchronized neural activities. Recent findings strongly suggest that the neural binding cannot be simply explained paradigm suggesting localization of the mental functions, thus necessitating substantial revision of the Cartesian concept of the brain and localization of consciousness.

Keywords

Anterior Cingulate Cortex Pineal Gland Mental Function Neural Correlate Neuronal Assembly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Acheson A, Conover JC, Fandl JP, DeChiara TM, Russell M, Thadani A, Slinto SP, Yancopoulos GD, Lindsay RM. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature. 1995;374:450–3.PubMedGoogle Scholar
  2. Allman JM, Hakeem A, Erwin JM, Nimchinsky E, Hof P. The anterior cingulate cortex. The evolution of an interface between emotion and cognition. Ann N Y Acad Sci. 2001;935:107–17.PubMedGoogle Scholar
  3. Arp R. Selectivity, integration, and the psycho-neuro-biological continuum. J Mind Behav. 2005;26:35–64.Google Scholar
  4. Barrera-Mera B, Barrera-Calva E. The Cartesian clock metaphor for pineal gland operation ­pervades the origin of modern chronobiology. Neurosci Biobehav Rev. 1998;23:1–4.PubMedGoogle Scholar
  5. Bartels A, Zeki S. The temporal order of binding visual attributes. Vision Res. 2006;46:2280–6.PubMedGoogle Scholar
  6. Bath KG, Lee FS. Variant BDNF (Val66Met) impact on brain structure and function. Cogn Affect Behav Neurosci. 2006;6:79–85.PubMedGoogle Scholar
  7. Baydas G, Ozveren F, Akdemir I, Tuzcu M, Yasar A. Learning and memory deficits in rats induced by chronic thinner exposure are reversed by melatonin. J Pineal Res. 2005;39:50–6.PubMedGoogle Scholar
  8. Benarroch EE. The central autonomic network — functional organization, dysfunction and perspective. Mayo Clin Proc. 1993;68:988–1001.PubMedGoogle Scholar
  9. Binder DK, Scharfman HE. Brain-derived neurotrophic factor. Growth Factors. 2004;22:123–31.PubMedGoogle Scholar
  10. Boatright JH, Rubim NM, Iuvone PM. Regulation of endogenous dopamine release in amphibian retina by melatonin: the role of GABA. Vis Neurosci. 1994;11:1013–8.PubMedGoogle Scholar
  11. Bob P. Pain, dissociation and subliminal self-representations. Conscious Cogn. 2008;17:355–69.PubMedGoogle Scholar
  12. Bob P. Quantum science and the nature of mind. J Mind Behav. 2009;30:1–14.Google Scholar
  13. Bob P, Fedor-Freybergh P. Melatonin, consciousness and traumatic stress. J Pineal Res. 2008;44:341–7.PubMedGoogle Scholar
  14. Bob P, Susta M, Gregusova A, Jasova D. Dissociation, cognitive conflict and nonlinear patterns of heart rate dynamics in patients with unipolar depression. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:141–5.PubMedGoogle Scholar
  15. Bogen JE. On the neurophysiology of consciousness: part I- an overview. Conscious Cogn. 1995;4:52–62.PubMedGoogle Scholar
  16. Braitenberg V. Cell assemblies in the cerebral cortex. In: Heim R, Palm G, editors. Theoretical approaches to complex systems. Lecture notes in biomathematics. Berlin: Springer; 1978. p. 171–88.Google Scholar
  17. Bramham CR, Messaoudi E. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol. 2005;76:99–125.PubMedGoogle Scholar
  18. Bressler, SL, Kelso JAS. Cortical coordination dynamics and cognition. Trends Cogn Sci. 2001;5:26–6.Google Scholar
  19. Bressler SL, Coppola R, Nakamura R. Episodic multiregional cortical coherence at multiple ­frequencies during visual task performance. Nature. 1993;366:153–6.PubMedGoogle Scholar
  20. Brewin CR. Autobiographical memory for trauma: update on four controversies. Memory. 2007;15:227–48.PubMedGoogle Scholar
  21. Brown R, Kocsis JH, Caroff S. Differences in nocturnal melatonin secretion between melancholic depressed patients and control subjects. Am J Psych. 1985;142:811–16.PubMedGoogle Scholar
  22. Bunge SA, Ochsner KN, Reskond JE, Dover GH, Gabrieli JDE. Prefrontal regions involved in keeping information in and out of mind. Brain. 2001;124:2074–86.PubMedGoogle Scholar
  23. Buzsaki G. Rhythms of the brain. Oxford: Oxford University Press; 2006.Google Scholar
  24. Chaudhury D, Wang LM, Colwell CS. Circadian regulation of hippocampal long-term potentiation. J Biol Rhythms. 2005;20:225–36.PubMedGoogle Scholar
  25. Cotterill RMJ. On the unity of conscious experience. J Conscious Stud. 1995;2:290–12.Google Scholar
  26. Crick F, Koch C. The problem of consciousness. Sci Am. 1992;267(3):153–9.Google Scholar
  27. Crick F, Koch C. A framework for consciousness. Nat Neurosci. 2003;6:119–26.PubMedGoogle Scholar
  28. Dennett D. Consciousness explained. Boston: Little, Brown; 1991.Google Scholar
  29. Desimone R, Schein SJ, Moran J, Ungerleider LG. Contour, color and shape analysis beyond the striate cortex. Vision Res. 1985;25:441–52.PubMedGoogle Scholar
  30. Diamond DM, Rose GM. Stress impairs LTP and hippocampal-dependent memory. Ann N Y Acad Sci. 1994;746:411–4.PubMedGoogle Scholar
  31. Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ. Coherent oscillations: a mechanism of feature linking in the visual cortex? Biol Cybern. 1988;60:121–30.PubMedGoogle Scholar
  32. El-Sherif Y, Tesoriero J, Hogan MV, Wieraszko A. Melatonin regulates neuronal plasticity in the hippocampus. J Neurosci Res. 2003;72:454–60.PubMedGoogle Scholar
  33. Felleman D, Van Essen D. Distributed hierarchical processing in the primate visual cortex. Cereb Cortex. 1991;1:1–47.PubMedGoogle Scholar
  34. Fidelman U. Visual search and quantum mechanics: a neuropsychological basis of Kantۥs creative imagination. J Mind Behav. 2005;26:23–33.Google Scholar
  35. Finger S. Origins of neuroscience: a history of explorations into brain function. New York: Oxford University Press; 1994.Google Scholar
  36. Frazer A, Brown R, Kocsis J, Caroff S, Amsterdam J, Winokur A, Sweeney J, Stokes P. Patterns of melatonin rhythms in depression. J Neural Transm Suppl. 1986;21:269–90.PubMedGoogle Scholar
  37. Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Neurosci. 2005;9:474–80.PubMedGoogle Scholar
  38. Fuchs E, Schumacher M. Psychosocial stress affects pineal function in the tree shrew (Tupaia belangeri). Physiol Behav. 1990;47:713–7.PubMedGoogle Scholar
  39. Gerdin MJ, Masana MI, Rivera-Bermudez MA, Hudson RL, Earnest DJ, Gillette MU, Dubocovich ML. Melatonin desensitizes endogenous MT2 melatonin receptors in the rat suprachiasmatic nucleus: relevance for defining the periods of sensitivity of the mammalian circadian clock to melatonin. FASEB J. 2004;18:1646–56.PubMedGoogle Scholar
  40. Ghose GM, Tso DY. Form processing modules in primate area V4. J Neurophysiol. 1997;77:2191–6.Google Scholar
  41. Gorfine T, Zisapel N. Melatonin and the human hippocampus, a time dependent interplay. J Pineal Res. 2007;43:80–6.PubMedGoogle Scholar
  42. Gray JA. The contents of consciousness: a neuropsychological conjecture. Behav Brain Sci. 1995;18:659–22.Google Scholar
  43. Hamada T, Antle MC, Silver R. Temporal and spatial expression patterns of canonical clock genes and clock-controlled genes in the suprachiasmatic nucleus. Eur J Neurosci. 2004;19:1741–8.PubMedGoogle Scholar
  44. Hemby SE, Trojanowski JQ, Ginsberg SD. Neuron-specific age-related decreases in dopamine receptor subtype mRNAs. J Comp Neurol. 2003;456:176–83.PubMedGoogle Scholar
  45. Hogan MV, El-Sherif Y, Wieraszko A. The modulation of neuronal activity by melatonin: in vitro studies on mouse hippocampal slices. J Pineal Res. 2001;30:87–96.PubMedGoogle Scholar
  46. Indic P, Schwartz WJ, Herzog ED, Foley NC, Antle MC. Modeling the behavior of coupled ­cellular circadian oscillators in the suprachiasmatic nucleus. J Biol Rhythms. 2007;22:211–9.PubMedGoogle Scholar
  47. Jensen O, Kaiser J, Lachaux JP. Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci. 2007;30:317–24.PubMedGoogle Scholar
  48. Jiang ZG, Nelson CS, Allen CN. Melatonin activates an outward current and inhibits Ih in rat suprachiasmatic nucleus neurons. Brain Res. 1995;687:125–32.PubMedGoogle Scholar
  49. Jindal RD, Thase ME. Treatment of insomnia associated with clinical depression. Sleep Med Rev. 2004;8:19–30.PubMedGoogle Scholar
  50. John ER. The neurophysics of consciousness. Brain Res Rev. 2002;39:1–28.PubMedGoogle Scholar
  51. Kalsbeek A, Palm IF, La Fleur SE, Scheer FA, Perreau-Lenz S, Ruiter M, Kreier F, Cailotto C, Buijs RM. SCN outputs and the hypothalamic balance of life. J Biol Rhythms. 2006;21:458–69.PubMedGoogle Scholar
  52. Kandel E, Schwarz J, Jessel T. Principles of neural science. New York: McGraw–Hill; 2000.Google Scholar
  53. Kenardy J, Smith A, Spence SH, Lilley PR, Newcombe P, Dob R, Robinson S. Dissociation in children’s trauma narratives: an exploratory investigation. J Anxiety Disord. 2007;21:456–66.PubMedGoogle Scholar
  54. Kukleta M, Bob P, Brázdil M, Roman R, Rektor I. The level of frontal-temporal beta-2 band EEG synchronization distinguishes anterior cingulate cortex from other frontal regions. Conscious Cogn. 2010;19:879–86.PubMedGoogle Scholar
  55. Lachaux JP, Rodriguez E, Martinerie J, Varela FJ. Measuring phase synchrony in brain signals. Hum Brain Mapp. 1999;8:194–208.PubMedGoogle Scholar
  56. Lane RD, Reiman EM, Axelrod B, Yun LS, Holmes A, Schwarz GE. Neural correlates of levels of emotional awareness. Evidence of an interaction between emotion and attention in the anterior cingulate cortex. J Cogn Neurosci. 1998;10:525–35.PubMedGoogle Scholar
  57. LaRock E. Why neural synchrony fails to explain the unity of visual consciousness. Behav Philos. 2006;34:39–58.Google Scholar
  58. Larson J, Jessen RE, Uz T, Arslan AD, Kurtuncu M, Imbesi M, Manev H. Impaired hippocampal long-term potentiation in melatonin MT2 receptor-deficient mice. Neurosci Lett. 2006;393:23–6.PubMedGoogle Scholar
  59. Laudon M, Hyde JF, Ben-Jonathan N. Ontogeny of prolactin releasing and inhibiting activities in the posterior pituitary of male rats. Neuroendocrinology. 1989;50:644–49.PubMedGoogle Scholar
  60. Lee KH, Williams LM, Breakspear M, Gordon E. Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Res Rev. 2003;41:57–78.PubMedGoogle Scholar
  61. Lynch MA. Long-term potentiation and memory. Physiol Rev. 2004;84:87–136.PubMedGoogle Scholar
  62. Mason R, Rusak B. Neurophysiological responses to melatonin in the SCN of short-day sensitive and refractory hamsters. Brain Res. 1990;533:15–19.PubMedGoogle Scholar
  63. Meador KJ, Ray PG, Echauz JR, Loring DW, Vachtsevanos GJ. Gamma coherence and conscious perception. Neurology. 2005;59:1847–54.Google Scholar
  64. Meyer U, Kruhoffer M, Flugge G, Fuchs E. Cloning of glucocorticoid receptor and mineralocorticoid receptor cDNA and gene expression in the central nervous system of the tree shrew (Tupaia belangeri). Brain Res Mol Brain Res. 1998;55:243–53.PubMedGoogle Scholar
  65. Milin J, Demajo M, Todorovic V. Rat pinealocyte reactive response to a long-term stress inducement. Neuroscience. 1996;73:845–54.PubMedGoogle Scholar
  66. Mizuno K, Giese KP. Hippocampus-dependent memory formation: do memory type-specific mechanisms exist? J Pharmacol Sci. 2005;98:191–7.PubMedGoogle Scholar
  67. Mossner R, Daniel S, Albert D, Heils A, Okladnova O, Schmitt A, Lesch KP. Serotonin transporter function is modulated by brain derived neurotrophic factor (BDNF) but not nerve growth factor (NGF). Neurochem Int. 2000;36:197–202.PubMedGoogle Scholar
  68. Musshoff U, Riewenherm D, Berger E, Fauteck JD, Speckmann EJ. Melatonin receptors in rat hippocampus: molecular and functional investigations. Hippocampus. 2002;12:165–73.PubMedGoogle Scholar
  69. Nadel L. Hippocampus, space, and relations. Behav Brain Sci. 1994;17:490–91.Google Scholar
  70. Nadel L, Jacobs WJ. Traumatic memory is special. Curr Dir Psychol Sci. 1998;7:154–57.Google Scholar
  71. Narita M, Aoki K, Takagi M, Yajima Y, Suzuki T. Implication of brain derived neurotrophic factor in the release of dopamine and dopamine-related behaviors induced by amphetamine. Neuroscience. 2003;119:767–75.PubMedGoogle Scholar
  72. O’Keefe LP, Movshon JA. Processing of first- and second-order motion signals by neurons in area MT of the macaque monkey. Vis Neurosci. 1998;15:305–17.PubMedGoogle Scholar
  73. Ozcan M, Yilmaz B, Carpenter DO. Effects of melatonin on synaptic transmission and long-term potentiation in two areas of mouse hippocampus. Brain Res. 2006;1111:90–4.PubMedGoogle Scholar
  74. Pacchierotti C, Iapichino S, Bossini L, Pieraccini F, Castrogiovanni P. Melatonin in psychiatric disorders: a review on the melatonin involvement in psychiatry. Front Neuroendocrinol. 2001;22:18–32.PubMedGoogle Scholar
  75. Paus T. Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci. 2001;2:417–24.PubMedGoogle Scholar
  76. Payne JD, Jackson ED, Ryan L, Hoscheidt S, Jacobs JW, Nadel L. The impact of stress on neutral and emotional aspects of episodic memory. Memory. 2006;14:1–16.PubMedGoogle Scholar
  77. Pevet P, Agez L, Bothorel B, Saboureau M, Gauer F, Laurent V, Masson-Pevet M. Melatonin in the multi-oscillatory mammalian circadian world. Chronobiol Int. 2006;23:39–51.PubMedGoogle Scholar
  78. Posner MI, Rothbart MK, Sheese BE, Tang Y. The anterior cingulate gyrus and the mechanism of self-regulation. Cogn Affect Behav Neurosci. 2007;7:391–95.PubMedGoogle Scholar
  79. Rattiner LM, Davis M, Ressler KJ. Brain-derived neurotrophic factor in amygdala-dependent learning. Neuroscientist. 2005;11:323–33.PubMedGoogle Scholar
  80. Rodriguez R, Kallenbach U, Singer W, Munk MH. Short- and long-term effects of cholinergic modulation on gamma oscillations and response synchronization in the visual cortex. J Neurosci. 2004;24:10369–78.PubMedGoogle Scholar
  81. Rueda MR, Posner MI, Rothbart MK. Attentional control and self-regulation. In: Baumeister RF, Vohs KD, editors. Handbook of self-regulation: research, theory, and applications. New York: Guilford; 2004. p. 283–300.Google Scholar
  82. Ruel JMHM, de Kloet ER. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology. 1985;117:2505–12.Google Scholar
  83. Rutter J, Reick M, McKnight SL. Metabolism and the control of circadian rhythms. Annu Rev Biochem. 2002;71:307–31.PubMedGoogle Scholar
  84. Saenz DA, Goldin AP, Minces L, Chianelli M, Sarmiento MI, Rosenstein RE. Effect of melatonin on the retinal glutamate/glutamine cycle in the golden hamster retina. FASEB J. 2004;18: 1912–13.PubMedGoogle Scholar
  85. Sannita W. Stimulus-specific oscillatory responses of the brain: a time/frequency related coding process. Clin Neurophysiol. 2000;11:565–83.Google Scholar
  86. Saper CB, Lu J, Chou TC, Gooley J. The hypothalamic integrator for circadian rhythms. Trends Neurosci. 2005;28:152–7.PubMedGoogle Scholar
  87. Sarrieau A, Dussaillant M, Moguilewsky M. Autoradiographic localization of glucocorticosteroid binding sites in rat brain after in vivo injection of [3H]RU 28362. Neurosci Lett. 1988;92:14–20.PubMedGoogle Scholar
  88. Savitz J, Solms M, Ramesar R. The molecular genetics of cognition: dopamine, COMT and BDNF. Genes Brain Behav. 2006;5:311–28.PubMedGoogle Scholar
  89. Schein SJ, Desimone R. Spectral properties of V4 neurons in the macaque. J Neurosci. 1990;10:3369–89.PubMedGoogle Scholar
  90. Shibata S, Cassone VM, Moore RY. Effects of melatonin on neuronal activity in the rat suprachiasmatic nucleus in vitro. Neurosci Lett. 1989;97:140–4.PubMedGoogle Scholar
  91. Simonneaux V, Ribelayga C. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine peptides, and other pineal transmitters. Pharmacol Rev. 2003;55:325–95.PubMedGoogle Scholar
  92. Singer W. Synchronization of cortical activity and its putative role in information procesing and learning. Annu Rev Physiol. 1993;55:349–74.PubMedGoogle Scholar
  93. Singer W. Consciousness and the binding problem. Ann N Y Acad Sci. 2001;929:123–46.PubMedGoogle Scholar
  94. Singer W, Gray CM. Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci. 1995;18:555–86.PubMedGoogle Scholar
  95. Skaper SD, Ancona B, Facci L, Franceschini D, Giusti P. Melatonin prevents the delayed death of hippocampal neurons induced by enhanced excitatory neurotransmission and the nitridergic pathway. FASEB J. 1998;12:725–31.PubMedGoogle Scholar
  96. Smith CUM. Descartes’ pineal neuropsychology. Brain Cogn. 1998;36:57–72.PubMedGoogle Scholar
  97. Soule J, Messaoudi E, Bramham CR. Brain-derived neurotrophic factor and control of synaptic consolidation in the adult brain. Biochem Soc Trans. 2006;34:600–4.PubMedGoogle Scholar
  98. Stehle J, Vanecek J, Vollrath L. Effects of melatonin on spontaneous electrical activity of neurons in rat suprachiasmatic nuclei: an in vitro iontophoretic study. J Neural Transm. 1989;78:173–77.PubMedGoogle Scholar
  99. Thomas K, Davies A. Neurotrophins: a ticket to ride for BDNF. Curr Biol. 2005;15:262–4.Google Scholar
  100. Torres-Farfan C, Richter HG, Rojas-García P, Vergara M, Forcelledo ML, Valladares LE, Torrealba F, Valenzuela GJ, Serón-Ferré M. mt1 melatonin receptor in the primate adrenal gland: inhibition of adrenocorticotropin-stimulated cortisol production by melatonin. J Clin Endocrinol Metab. 2003;88:450–58.PubMedGoogle Scholar
  101. Treue S, Andersen RA. Neural responses to velocity gradients in macaque cortical area MT. Vis Neurosci. 1996;13:797–804.PubMedGoogle Scholar
  102. Uysal N, Ozdemir D, Dayi A, Yalaz G, Baltaci AK, Bediz CS. Effects of maternal deprivation on melatonin production and cognition in adolescent male and female rats. Neuro Endocrinol Lett. 2005;26:555–60.PubMedGoogle Scholar
  103. van de Grind W. Physical, neural, and mental timing. Conscious Cogn. 2002;11:241–64.PubMedGoogle Scholar
  104. van den Top M, Buijs RM, Ruijter JM, Delagrange P, Spanswick D, Hermes ML. Melatonin generates an outward potassium current in rat suprachiasmatic nucleus neurones in vitro independent of their circadian rhythm. Neuroscience. 2001;107:99–108.PubMedGoogle Scholar
  105. van der Velde F, de Kamps M. Neural blackboard architectures of combinatorial structures in cognition. Behav Brain Sci. 2006;29:1–72.Google Scholar
  106. Van Putten MJAM, Stam CJ. Is the EEG really “chaotic” in hypsarrhythmia. IEEE Eng Med Biol Mag. 2001;20:72–79.PubMedGoogle Scholar
  107. Varela F, Thompson E. Neural synchrony and the unity of mind: a neurophenomenological ­perspective. In: Cleeremans A, editor. The unity of consciousness: binding, integration, and dissociation. Oxford: Oxford University Press; 2003. p. 266–87.Google Scholar
  108. Varela FJ, Lachaux JP, Rodriguez E, Martinerie J. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci. 2001;2:229–39.PubMedGoogle Scholar
  109. Velik R. From single neuron-firing to consciousness- towards the true solution of the binding problem. Neurosci Biobehav Rev. 2010;34:993–1001.PubMedGoogle Scholar
  110. von der Malsburg C. The binding problem of neural networks. In: Llinas R, Churchland PS, ­editors. The mind-brain continuum: sensory processes. Cambridge, Massachusetts: MIT Press; 1996. p. 131–46.Google Scholar
  111. von der Malsburg C. The what and why of binding: the modeler’s perspective. Neuron. 1999;24: 95–104.PubMedGoogle Scholar
  112. von der Malsburg C, Schneider W. A neural cocktail-party processor. Biol Cybern. 1986;54: 29–40.PubMedGoogle Scholar
  113. von Gall C, Garabette ML, Kell CA, Frenzel S, Dehghani F, Schumm-Draeger PM, Weaver DR, Korf HW, Hastings MH, Stehle JH. Rhythmic gene expression in pituitary depends on hetero-logous sensitization by the neurohormone melatonin. Nat Neurosci. 2002;5:234–38.Google Scholar
  114. Vollrath L, Welker HA. Day-to-day variation in pineal serotonin N-acetyltransferase activity in stressed and nonstressed male Sprague-Dawley rats. Life Sci. 1988;42:2223–29.Google Scholar
  115. Wan Q, Man HY, Liu F, Braunton J, Niznik HB, Pang SF, Brown GM, Wang YT. Differential modulation of GABAA receptor function by Mel1a and Mel1b receptors. Nat Neurosci. 1999;2:401–03.PubMedGoogle Scholar
  116. Wang LM, Suthana NA, Chaudhury D, Weaver DR, Colwell CS. Melatonin inhibits hippocampal long-term potentiation. Eur J Neurosci. 2005;22:2231–37.PubMedGoogle Scholar
  117. Warembourg M. Radioautographic study of the rat brain and pituitary after injection of 3H dexamethasone. Cell Tissue Res. 1975;161:183–191.PubMedGoogle Scholar
  118. Weiskrantz L. Consciousness and commentaries. In: Hameroff SR, Kaszriak A, Scott AC, editors. Toward a science of consciousness II—The second Tucson discussions and debates. Cambridge, MA: MIT Press; 1998. p. 371–77.Google Scholar
  119. Woolf N, Hameroff S. A quantum approach to visual consciousness. Trends Cogn Neurosci. 2001;5:472–78.Google Scholar
  120. Yamada K, Nabeshima T. Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci. 2003;91:267–70.PubMedGoogle Scholar
  121. Zeise ML, Semm P. Melatonin lowers excitability of guinea pig hippocampal neurons in vitro. J Comp Physiol. 1985;57:23–29.Google Scholar
  122. Zeki S. A vision of the brain. Oxford: Blackwell Science; 1994.Google Scholar
  123. Zeki S. The disunity of consciousness. Trends Cogn Neurosci. 2003;7:214–18.Google Scholar
  124. Zeman A. Consciousness. Brain. 2001;124(Pt 7):1263–89.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Center for Neuropsychiatric Research of Traumatic Stress and Department of PsychiatryCharles UniversityPragueCzech Republic

Personalised recommendations