Advertisement

The Sample and Its Properties

Chapter
Part of the Springer Texts in Statistics book series (STS)

Abstract

The famous American statistician John Tukey once said, “Exploratory data analysis can never be the whole story, but nothing else can serve as the foundation stone – as the first step.” The term exploratory data analysis is selfdefining. Its simplest branch, descriptive statistics, is the methodology behind approaching and summarizing experimental data. No formal statistical training is needed for its use.

Keywords

Duchenne Muscular Dystrophy Multivariate Data Duchenne Muscular Dystrophy Sample Standard Deviation Multivariate Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter References

  1. Anderson, E. (1935). The Irises of the Gaspe Peninsula. Bull. Am. Iris Soc., 59, 2–5.Google Scholar
  2. Andrews, F. D. (1972). Plots of high dimensional data. Biometrics, 28, 125–136.CrossRefGoogle Scholar
  3. Bowley, A. L. (1920). Elements of Statistics. Scribner, New York.Google Scholar
  4. Brillinger, D. R. (2001). Time Series: Data Analysis and Theory. Classics Appl. Math. 36, SIAM, pp 540.MathSciNetGoogle Scholar
  5. Brockwell, P. J. and Davis, R. A. (2009). Introduction to Time Series and Forecasting. Springer, New York.Google Scholar
  6. Brozek, J., Grande, F., Anderson, J., and Keys, A. (1963). Densitometric analysis of body composition: revision of some quantitative assumptions. Ann. New York Acad. Sci., 110, 113–140.CrossRefGoogle Scholar
  7. Chernoff, H. (1973). The use of faces to represent points in k-dimensional space graphically. J. Am. Stat. Assoc., 68, 361–366.CrossRefGoogle Scholar
  8. Christov, I., Dotsinsky, I., Simova, I., Prokopova, R., Trendafilova, E., and Naydenov, S. (2006). Dataset of manually measured QT intervals in the electrocardiogram. BioMed. Eng. OnLine, 5, 31 doi:10.1186/1475-925X-5-31. The electronic version of this article can be found online at:http://www.biomedical-engineering-online.com/content/5/1/31 CrossRefGoogle Scholar
  9. David, H. A. (1998). Early sample measures of variability. Stat. Sci., 13, 4, 368–377.MATHCrossRefGoogle Scholar
  10. Farrell B., Bulgakova M., Hodson-Tole E.F., Shah S., Gregor R.J., Prilutsky B.I. (2009). Short-term locomotor adaptations to denervation of lateral gastrocnemius and soleus muscles in the cat. In: Proceedings of the Society for Neuroscience meeting, 17–21 October 2009, Chicago.Google Scholar
  11. Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, Pt. II, 179–188.CrossRefGoogle Scholar
  12. Gauss, C. F. (1816). Bestimmung der Genauigkeit der Beobachtungen. Zeitschrift Astron., 1, 185–197.Google Scholar
  13. Johnson, R. W. (1996). Fitting percentage of body fat to simple body measurements. J. Stat. Educ., 4, 1. http://www.amstat.org/publications/jse/v4n1/datasets.johnson.html Google Scholar
  14. Kaufman, L. and Rock, I. (1962). The moon illusion. Science, 136, 953–961.CrossRefGoogle Scholar
  15. Moors, J. J. A. (1988). A Quantile Alternative for Kurtosis. Statistician, 37, 25–32.CrossRefGoogle Scholar
  16. Morrison, D. F. (1976). Multivariate Statistical Methods, 2nd edn. McGraw-Hill, New YorkMATHGoogle Scholar
  17. Nicholson, A. J. (1954). An Outline of the Dynamics of Animal Populations. Aust. J. Zool., 2, 1, 9–65.CrossRefMathSciNetGoogle Scholar
  18. Nightingale, F. (1858). Notes on matters affecting the health, efficiency, and hospital administration of the British army. Founded chiefly on the experience of the late war. Presented by request to the Secretary of State for War. Privately printed for Miss Nightingale, Harrison and Sons.Google Scholar
  19. Penrose, K., Nelson, A., and Fisher, A. (1985). Generalized body composition prediction equation for men using simple measurement techniques (abstract). Med. Sc. Sports Exerc., 17, 2, 189.CrossRefGoogle Scholar
  20. Percy, M. E., Andrews, D. F., Thompson, M. W., and Opitz J. M. (1981). Duchenne muscular dystrophy carrier detection using logistic discrimination: Serum creatine kinase and hemopexin in combination. Am. J. Med. Genet., 8, 4, 397–409.CrossRefGoogle Scholar
  21. Rao, C. R. (1948). Tests of significance in multivariate analysis. Biometrika, 35, 58–79.MATHMathSciNetGoogle Scholar
  22. Shumway, R. H. and Stoffer, D. S. (2005). Time Series Analysis and Its Applications. Springer Texts in Statistics, Springer, New York.Google Scholar
  23. Siri, W. E. (1961). Body composition from fluid spaces and density: Analysis of methods. In Techniques for Measuring Body Composition, Eds. J. Brozek and A. Henzchel. National Academy of Sciences, Washington, 224–244.Google Scholar
  24. Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103, 2684, 677–680. PMID 17750512.CrossRefGoogle Scholar
  25. Sturges, H. (1926). The choice of a class-interval. J. Am. Stat. Assoc., 21, 65–66.Google Scholar
  26. Velleman, P. F. and Wilkinson, L. (1993). Nominal, ordinal, interval, and ratio typologies are misleading. Am. Stat., 47, 1, 65–72.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations