Spatial Models

Chapter
Part of the Statistics for Social and Behavioral Sciences book series (SSBS)

Abstract

Economists and statisticians are rediscovering geography. Until relatively recently, most economic models essentially ignored spatial variations in data and in relationships; these were not at the heart of the issues that were considered to be interesting.

Keywords

Maize Covariance Income Beach Autocorrelation 

References

  1. Anselin, Luc. 1992. SpaceStat tutorial. Urbana-Champaign: University of Illinois.Google Scholar
  2. Anselin, Luc. 1998. Spatial econometrics: Methods and models. Dordrecht: Kluwer Academic.Google Scholar
  3. Anselin, Luc, and R. Florax. 1995. Introduction. In Net directions in spatial econometrics, ed. L. Anselin and R. Florax. Berlin: Springer.CrossRefGoogle Scholar
  4. Aragon, Yves, Dominique Haughton, Jonathan Haughton, Eve Leconte, Eric Malin, Anne Ruiz-Gazen, and Christine Thomas-Agnan. 2003. Explaining the pattern of regional unemployment: The case of the Midi-Pyrénées region. Papers in Regional Science 82: 155–174.CrossRefGoogle Scholar
  5. Brunsdon, C., A.S. Fotheringham, and M.E. Charlton. 1996. Geographically weighted regression: A method for exploring spatial non-stationarity. Geographical Analysis 28: 281–298.CrossRefGoogle Scholar
  6. Case, Anne. 1991. Spatial patterns in household demand. Econometrica 59(4): 953–965.CrossRefGoogle Scholar
  7. Casetti, E. 1972. Generating models by the expansion method: Applications to geographic research. Geographical Analysis 4: 81–91.CrossRefGoogle Scholar
  8. Daimon, Takeshi. 2001. The spatial dimension of welfare and poverty: Lessons from a regional targeting programme in Indonesia. Asian Economic Journal 15(4): 345–367.CrossRefGoogle Scholar
  9. Druska, Viliam, and William Horrace. 2004. Generalized moments estimation for spatial panel data: Indonesia rice farming. American Journal of Agricultural Economics 86(1): 185–198.CrossRefGoogle Scholar
  10. Florax, R., and H. Folmer. 1992. Specification and estimation of spatial linear regression models: Monte Carlo evaluation and pre-test estimators. Regional Science and Urban Economics 22: 405–432.CrossRefGoogle Scholar
  11. Haughton, D., J. Haughton, and A. Izenman. 1990. Information criteria and harmonic models in time-series analysis. Journal of Statistical Computation and Simulation 35: 187–207.MathSciNetCrossRefGoogle Scholar
  12. Haughton, Dominique, and Nguyen, Phong. 2010. Multilevel models and inequality in Vietnam. Journal of Data Science 8: 289–306.Google Scholar
  13. INSEE. 1996. FIDEL Base de Données – 1996: Guide de L’Utilisateur. Paris: Institut National de la Statistique et des Études Économiques.Google Scholar
  14. Kaimowitz, David, Patricia Mendez, Atie Puntodewo, and Jerry Vanclay. 2002. Spatial regression analysis of deforestation in Santa Cruz, Bolivia. In Land use and deforestation in the Amazon, ed. C.H. Wood and R. Porro. Gainesville: University Press of Florida.Google Scholar
  15. LeSage, James. 1998. Spatial econometrics. Toledo: Department of Economics, University of Toledo.Google Scholar
  16. Ravallion, Martin, and Quentin Wodon. 1997. Poor areas, or only poor people? Policy Research Working Paper 1798. Washington, DC: World Bank.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematical SciencesBentley CollegeWalthamUSA
  2. 2.Department of EconomicsSuffolk UniversityBostonUSA

Personalised recommendations