Synthesis of Inorganic Nanoparticles Using Protein Templates



The synthesis of nanoparticles with controlled composition, size and shape has long been of scientific and technological interest. Despite efforts invested to this problem, selective preparation of tailor made particles by conventional methods constitutes a considerable challenge. In contrast, highly selective fabrication of monodisperse functional nanosized particles occurs continuously in every living cell. The process of building of inorganic and hybrid organic–inorganic architectures on templates of biopolymers through biomineralization is also very common in biological systems and provides the level of control that has not been closely achieved in conventional technology. Any biomineralization is achieved through controlled nucleation of metal cations by functional groups in amino acid constituting proteins. Study of the biomineralization in the last two decades and attempts to mimic the process have been highly successful although details are far from being completely understood


Protein cages Templated synthesis Protein templates Ferritin Dps proteins HSP proteins Viruses Hollow nanoparticles Bimetallic nanoparticles 


  1. 1.
    Sigel, A.; Sigel, H.; Sigel, R. K. O. Biomineralization : from nature to application; John Wiley & Sons: Chichester, 2008.CrossRefGoogle Scholar
  2. 2.
    Bauerlein, E., Biomineralization of unicellular organisms: An unusual membrane biochemistry for the production of inorganic nano- and microstructures Angewandte Chemie-International Edition 2003, 42, 614–641.CrossRefGoogle Scholar
  3. 3.
    Gallois, B.; dEstaintot, B. L.; Michaux, M. A.; Dautant, A.; Granier, T.; Precigoux, G.; Soruco, J. A.; Roland, F.; ChavasAlba, O.; Herbas, A.; Crichton, R. R., X-ray structure of recombinant horse L-chain apoferritin at 2.0 angstrom resolution: Implications for stability and function Journal of Biological Inorganic Chemistry 1997, 2, 360–367.CrossRefGoogle Scholar
  4. 4.
    Liu, X. S.; Patterson, L. D.; Miller, M. J.; Theil, E. C., Peptides selected for the protein nanocage pores change the rate of iron recovery from the ferritin mineral Journal of Biological Chemistry 2007, 282, 31821-31825.CrossRefGoogle Scholar
  5. 5.
    Galvez, N.; Ruiz, B.; Cuesta, R.; Colacio, E.; Dominguez-Vera, J. M., Release of iron from ferritin by aceto- and benzohydroxamic acids Inorganic Chemistry 2005, 44, 2706-2709.CrossRefGoogle Scholar
  6. 6.
    Masuda, T.; Goto, F.; Yoshihara, T.; Mikami, B., Crystal structure of plant ferritin reveals a novel metal bindingsite that functions as a transit site for metal transfer in ferritin The Journal of Biological Chemistry 2010, 285, 4049-4059.CrossRefGoogle Scholar
  7. 7.
    Takahashi, T.; Kuyucak, S., Functional properties of threefold and fourfold channels in ferritin deduced from electrostatic calculations Biophysical Journal 2003, 84, 2256-2263.CrossRefGoogle Scholar
  8. 8.
    Douglas, T.; Ripoll, D. R., Calculated electrostatic gradients in recombinant human H-chain ferritin Protein Science 1998, 7, 1083-1091.CrossRefGoogle Scholar
  9. 9.
    Pead, S.; Durrant, E.; Webb, B.; Larsen, C.; Heaton, D.; Johnson, J.; Watt, G. D., Metal-Ion Binding To Apo, Holo, And Reconstituted Horse Spleen Ferritin Journal of Inorganic Biochemistry 1995, 59, 15-27.CrossRefGoogle Scholar
  10. 10.
    Ceolin, M.; Galvez, N.; Sanchez, P.; Fernandez, B.; Dominguez-Vera, J. M., Structural aspects of the growth mechanism of copper nanoparticles inside apoferritin European Journal of Inorganic Chemistry 2008, 795-801.Google Scholar
  11. 11.
    Wong, K. K. W.; Colfen, H.; Whilton, N. T.; Douglas, T.; Mann, S., Synthesis and characterization of hydrophobic ferritin proteins Journal of Inorganic Biochemistry 1999, 76, 187-195.Google Scholar
  12. 12.
    Clemente-Leon, M.; Coronado, E.; Primo, V.; Ribera, A.; Soriano-Portillo, A., Hybrid magnetic materials formed by ferritin intercalated into a layered double hydroxide Solid State Sciences 2008, 10, 1807-1813.Google Scholar
  13. 13.
    Hess, D. M.; Naik, R. R.; Rinaldi, C.; Tomczak, M. M.; Watkins, J. J., Fabrication of Ordered Mesoporous Silica Films with Encapsulated Iron Oxide Nanoparticles using Ferritin-Doped Block Copolymer Templates Chemistry of Materials 2009, 21, 2125-2129.Google Scholar
  14. 14.
    Niu, Z. W.; Kabisatpathy, S.; He, J. B.; Lee, L. A.; Rong, J. H.; Yang, L.; Sikha, G.; Popov, B. N.; Emrick, T. S.; Russell, T. P.; Wang, Q., Synthesis and Characterization of Bionanoparticle-Silica Composites and Mesoporous Silica with Large Pores Nano Research 2009, 2, 474-483.Google Scholar
  15. 15.
    Thota, S.; Kumar, J., Sol-gel synthesis and anomalous magnetic behaviour of NiO nanoparticles Journal of Physics and Chemistry of Solids 2007, 68, 1951-1964.CrossRefGoogle Scholar
  16. 16.
    Tominaga, M.; Han, L.; Wang, L. Y.; Maye, M. M.; Luo, J.; Kariuki, N.; Zhong, C. J., Formation of water-soluble iron oxide nanoparticles derived from iron storage protein Journal of Nanoscience and Nanotechnology 2004, 4, 708-711.Google Scholar
  17. 17.
    Galvez, N.; Fernandez, B.; Sanchez, P.; Cuesta, R.; Ceolin, M.; Clemente-Leon, M.; Trasobares, S.; Lopez-Haro, M.; Calvino, J. J.; Stephan, O.; Dominguez-Vera, J. M., Comparative structural and chemical studies of ferritin cores with gradual removal of their iron contents Journal of the American Chemical Society 2008, 130, 8062-8068.Google Scholar
  18. 18.
    Pu, Z. F.; Cao, M. H.; Jing, Y.; Huang, K. L.; Hu, C. W., Controlled synthesis and growth mechanism of hematite nanorhombohedra, nanorods and nanocubes Nanotechnology 2006, 17, 799-804.Google Scholar
  19. 19.
    Parker, M. J.; Allen, M. A.; Ramsay, B.; Klem, M. T.; Young, M.; Douglas, T., Expanding the temperature range of biomimetic synthesis using a ferritin from the hyperthermophile Pyrococcus furiosus Chemistry of Materials 2008, 20, 1541-1547.Google Scholar
  20. 20.
    Klem, M. T.; Young, M.; Douglas, T., Biomimetic synthesis of photoactive alpha-Fe2O3 templated by the hyperthermophilic ferritin from Pyrococus furiosus Journal of Materials Chemistry 2009, 20, 65-67.CrossRefGoogle Scholar
  21. 21.
    Klem, M. T.; Mosolf, J.; Young, M.; Douglas, T., Photochemical mineralization of europium, titanium, and iron oxyhydroxide nanoparticies in the ferritin protein cage Inorganic Chemistry 2008, 47, 2237-2239.Google Scholar
  22. 22.
    Li, C.; Qi, X.; Li, M.; Zhao, G.; Hu, X., Phosphate facilitates Fe(II) oxidative deposition in pea seed (Pisum sativum) ferritin Biochimie 2009, 91, 1475-1481.Google Scholar
  23. 23.
    Wade, V. J.; Treffry, A.; Laulhère, J. P.; Bauminger, E. R.; Cleton, M. I.; Mann, S.; Briat, J. F.; Harrison, P. M., Structure and composition of ferritin cores from pea seed (Pisum sativum) Biochimica Et Biophysica Acta 1993, 1161, 91-96.Google Scholar
  24. 24.
    Rohrer, J. S.; Islam, Q. T.; Watt, G. D.; Sayers, D. E.; Theil, E. C., Iron environment in ferritin with large amounts of phosphate, from Azotobacter vinelandii and horse spleen, analyzed using extended X-ray absorption fine structure (EXAFS) Biochemistry 1990, 29, 259-264.Google Scholar
  25. 25.
    Polanams, J.; Ray, A. D.; Watt, R. K., Nanophase iron phosphate, iron arsenate, iron vanadate, and iron molybdate minerals synthesized within the protein cage of ferritin Inorganic Chemistry 2005, 44, 3203-3209.CrossRefGoogle Scholar
  26. 26.
    Douglas, T.; Stark, V. T., Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin Inorganic Chemistry 2000, 39, 1828-1830.CrossRefGoogle Scholar
  27. 27.
    Klem, M. T.; Resnick, D. A.; Gilmore, K.; Young, M.; Idzerda, Y. U.; Douglas, T., Synthetic control over magnetic moment and exchange bias in all-oxide materials encapsulated within a spherical protein cage Journal of the American Chemical Society 2007, 129, 197-201.Google Scholar
  28. 28.
    Tsukamoto, R.; Iwahor, K.; Muraoka, M.; Yamashita, I., Synthesis of Co3O4 nanoparticles using the cage-shaped protein, apoferritin Bulletin of the Chemical Society of Japan 2005, 78, 2075-2081.Google Scholar
  29. 29.
    Kim, J. W.; Choi, S. H.; Lillehei, P. T.; Chu, S. H.; King, G. C.; Watt, G. D., Cobalt oxide hollow nanoparticles derived by bio-templating Chemical Communications 2005, 4101-4103.Google Scholar
  30. 30.
    Arosio, P.; Levi, S., Ferritin, iron homeostasis, and oxidative damage Free Radical Biology and Medicine 2002, 33, 457-463.CrossRefGoogle Scholar
  31. 31.
    Wong, K. K. W.; Douglas, T.; Gider, S.; Awschalom, D. D.; Mann, S., Biomimetic synthesis and characterization of magnetic proteins (magnetoferritin) Chemistry of Materials 1998, 10, 279-285.Google Scholar
  32. 32.
    Gider, S.; Awschalom, D. D.; Douglas, T.; Mann, S.; Chaparala, M., CLASSICAL AND QUANTUM MAGNETIC PHENOMENA IN NATURAL AND ARTIFICIAL FERRITIN PROTEINS Science 1995, 268, 77-80.Google Scholar
  33. 33.
    Gider, S.; Awschalom, D. D.; Douglas, T.; Wong, K.; Mann, S.; Cain, G., Classical and quantum magnetism in synthetic ferritin proteins Journal of Applied Physics 1996, 79, 5324-5326.Google Scholar
  34. 34.
    Okuda, M.; Iwahori, K.; Yamashita, I.; Yoshimura, H., Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin Biotechnology and Bioengineering 2003, 84, 187-194.Google Scholar
  35. 35.
    Hainfeld, J. F., Uranium-loaded apoferritin with antibodies attached: molecular design for uranium neutron-capture therapy Proceedings of the National Academy of Sciences of the United States of America 1992, 89, 11064-11068.CrossRefGoogle Scholar
  36. 36.
    Meldrum, F. C.; Wade, V. J.; Nimmo, D. L.; Heywood, B. R.; Mann, S., Synthesis of inorganic nanophase materials in supramolecular protein cages Nature 1991, 349, 684-687.Google Scholar
  37. 37.
    Douglas, T.; Dickson, D. P. E.; Betteridge, S.; Charnock, J.; Garner, C. D.; Mann, S., Synthesis and structure of an iron(III) sulfide-ferritin bioimorganic nanocomposite Science 1995, 269, 54-57.Google Scholar
  38. 38.
    Iwahori, K.; Yoshizawa, K.; Muraoka, M.; Yamashita, I., Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system Inorganic Chemistry 2005, 44, 6393-6400.Google Scholar
  39. 39.
    Yamashita, I.; Hayashi, J.; Hara, M., Bio-template synthesis of uniform CdSe nanoparticles using cage-shaped protein, apoferritin Chemistry Letters 2004, 33, 1158-1159.Google Scholar
  40. 40.
    Xing, R. M.; Wang, X. Y.; Yan, L. L.; Zhang, C. L.; Yang, Z.; Wang, X. H.; Guo, Z. J., Fabrication of water soluble and biocompatible CdSe nanoparticles in apoferritin with the aid of EDTA Dalton Transactions 2009, 1710-1713.Google Scholar
  41. 41.
    Li, M.; Viravaidya, C.; Mann, S., Polymer-mediated synthesis of ferritin-encapsulated inorganic nanoparticles Small 2007, 3, 1477-1481.CrossRefGoogle Scholar
  42. 42.
    Wu, H.; Engelhard, M. H.; Wang, J.; Fisher, D. R.; Lin, Y., Synthesis of lutetium phosphate-apoferritin core-shell nanoparticles for potential applications in radioimmunoimaging and radioimmunotherapy of cancers Journal of Materials Chemistry 2008, 18, 1779-1783.Google Scholar
  43. 43.
    Liu, G.; Wu, H.; Dohnalkova, A.; Lin, Y., Apoferritin-templeated synthesis of encoded metallic phosphate nanoparticle tags Analitical Chemistry 2 007, 79, 5614-5619.Google Scholar
  44. 44.
    Galvez, N.; Valero, E.; Ceolin, M.; Trasobares, S.; Lopez-Haro, M.; Calvino, J. J.; Dominguez-Vera, J. M., A bioinspired approach to the synthesis of bimetallic CoNi nanoparticles Inorganic Chemistry 2010, 49, 1705-1711.Google Scholar
  45. 45.
    Ueno, T.; Abe, M.; Hirata, K.; Abe, S.; Suzuki, M.; Shimizu, N.; Yamamoto, M.; Takata, M.; Watanabe, Y., Process of Accumulation of Metal Ions on the Interior Surface of apo-Ferritin: Crystal Structures of a Series of apo-Ferritins Containing Variable Quantities of Pd(II) Ions Journal of the American Chemical Society 2009, 131, 5094-5100.Google Scholar
  46. 46.
    Ueno, T.; Suzuki, M.; Goto, T.; Matsumoto, T.; Nagayama, K.; Watanabe, Y., Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage Angewandte Chemie-International Edition 2004, 43, 2527-2530.Google Scholar
  47. 47.
    Suzuki, M.; Abe, M.; Ueno, T.; Abe, S.; Goto, T.; Toda, Y.; Akita, T.; Yamadae, Y.; Watanabe, Y., Preparation and catalytic reaction of Au/Pd bimetallic nanoparticles in Apo-ferritin Chemical Communications 2 009, 4871-4873.Google Scholar
  48. 48.
    Dominguez-Vera, J. M.; Galvez, N.; Sanchez, P.; Mota, A. J.; Trasobares, S.; Hernandez, J. C.; Calvino, J. J., Size-controlled water-soluble Ag nanoparticles European Journal of Inorganic Chemistry 2007, 4823-4826.Google Scholar
  49. 49.
    Zhang, L.; Swift, J.; Butts, C. A.; Yerubandi, V.; Dmochowski, I. J., Structure and activity of apoferritin-stabilized gold nanoparticles Journal of Inorganic Biochemistry 2007, 101, 1719-1729.Google Scholar
  50. 50.
    Butts, C. A.; Swift, J.; Kang, S. G.; Di Costanzo, L.; Christianson, D. W.; Saven, J. G.; Dmochowski, I. J., Directing Noble Metal Ion Chemistry within a Designed Ferritin Protein Biochemistry 2008, 47, 12729-12739.Google Scholar
  51. 51.
    Kramer, R. M.; Li, C.; Carter, D. C.; Stone, M. O.; Naik, R. R., Engineered protein cages for nanomaterial synthesis Journal of the American Chemical Society 2004, 126, 13282-13286.Google Scholar
  52. 52.
    Shin, Y.; Dohnalkova, A.; Lin, Y., Preparation of homogeneous gold-silver alloy nanoparticles using the apoferritin cavity as a nanoreactor Journal of Physical Chemistry C 201 0, 114, 5985-5989.Google Scholar
  53. 53.
    Galvez, N.; Sanchez, P.; Dominguez-Vera, J. M., Preparation of Cu and CuFe Prussian Blue derivative nanoparticles using the apoferritin cavity as nanoreactor Dalton Transactions 2005, 2492-2494.Google Scholar
  54. 54.
    Liu, X. F.; Jin, W. L.; Theil, E. C., Opening protein pores with chaotropes enhances Fe reduction and chelation of Fe from the ferritin biomineral Proceedings of the National Academy of Sciences of the United States of America 2003, 100, 3653-3658.Google Scholar
  55. 55.
    Liu, G.; Debnath, S.; Paul, K. W.; Han, W. Q.; Hausner, D. B.; Hosein, H. A.; Michel, F. M.; Parise, J. B.; Sparks, D. L.; Strongin, D. R., Characterization and surface reactivity of ferrihydrite nanoparticles assembled in ferritin Langmuir 2006, 22, 9313-9321.Google Scholar
  56. 56.
    Hosein, H. A.; Strongin, D. R.; Allen, M.; Douglas, T., Iron and Cobalt oxide and metallic nanoparticles prepared from ferritin Langmuir 2004, 20, 10283-10287.CrossRefGoogle Scholar
  57. 57.
    Radisky, D. C.; Kaplan, J., Iron in cytosolic ferritin can be recycled through lysosomal degradation in human fibroblasts Biochemical Journal 1998, 336, 201-205.Google Scholar
  58. 58.
    Bellapadrona, G.; Stefanini, S.; Zamparelli, C.; Theil, E. C.; Chiancone, E., Iron Translocation into and out of Listeria innocua Dps and Size Distribution of the Protein-enclosed Nanomineral Are Modulated by the Electrostatic Gradient at the 3-fold "Ferritin-like" Pores Journal of Biological Chemistry 20 09, 284, 19101-19109.Google Scholar
  59. 59.
    Su, M. H.; Cavallo, S.; Stefanini, S.; Chiancone, E.; Chasteen, N. D., The so-called Listeria innocua ferritin is a Dps protein. Iron incorporation, detoxification, and DNA protection properties Biochemistry 2005, 44, 5572-5578.CrossRefGoogle Scholar
  60. 60.
    Allen, M.; Willits, D.; Mosolf, J.; Young, M.; Douglas, T., Protein cage constrained synthesis of ferrimagnetic iron oxide nanoparticles Advanced Materials 2002, 14, 1562-+.Google Scholar
  61. 61.
    Allen, M.; Willits, D.; Young, M.; Douglas, T., Constrained synthesis of cobalt oxide nanomaterials in the 12-subunit protein cage from Listeria innocua Inorganic Chemistry 2003, 42, 6300-6305.CrossRefGoogle Scholar
  62. 62.
    Resnick, D. A.; Gilmore, K.; Idzerda, Y. U.; Klem, M. T.; Allen, M.; Douglas, T.; Arenholz, E.; Young, M., Magnetic properties of Co3O4 nanoparticles mineralized in Listeria innocua Dps Journal of Applied Physics 2006, 99.Google Scholar
  63. 63.
    Iwahori, K.; Enomoto, T.; Furusho, H.; Miura, A.; Nishio, K.; Mishima, Y.; Yamashita, I., Cadmium sulfide nanoparticle synthesis in Dps protein from Listeria innocua Chemistry of Materials 2007, 19, 3105-3111.Google Scholar
  64. 64.
    Swift, J.; Wehbi, W. A.; Kelly, B. D.; Stowell, X. F.; Saven, J. G.; Dmochowski, I. J., Design of functional ferritin-like proteins with hydrophobic cavities Journal of the American Chemical Society 2006, 128, 6611-6619.Google Scholar
  65. 65.
    Bova, M. P.; Huang, Q. L.; Ding, L. L.; Horwitz, J., Subunit exchange, conformational stability, and chaperone-like function of the small heat shock protein 16.5 from Methanococcus jannaschii Journal of Biological Chemistry 2002, 277, 38468-38475.Google Scholar
  66. 66.
    Flenniken, M. L.; Willits, D. A.; Brumfield, S.; Young, M. J.; Douglas, T., The small heat shock protein cage from Methanococcus jannaschii is a versatile nanoscale platform for genetic and chemical modification Nano Letters 2003, 3, 1573-1576.Google Scholar
  67. 67.
    Varpness, Z.; Peters, J. W.; Young, M.; Douglas, T., Biomimetic synthesis of a H-2 catalyst using a protein cage architecture Nano Letters 2005, 5, 2306-2309.Google Scholar
  68. 68.
    Klem, M. T.; Willits, D.; Solis, D. J.; Belcher, A. M.; Young, M.; Douglas, T., Bio-inspired synthesis of protein-encapsulated CoPt nanoparticles Advanced Functional Materials 2005, 15, 1489-1494.Google Scholar
  69. 69.
    Shenton, W.; Mann, S.; Colfen, H.; Bacher, A.; Fischer, M., Synthesis of nanophase iron oxide in lumazine synthase capsids Angewandte Chemie-International Edition 2001, 40, 442-445.Google Scholar
  70. 70.
    Zhang, Z.; Buitenhuis, J.; Cukkemane, A.; Brocker, M.; Bott, M.; Dhont, J. K. G., Charge Reversal of the Rodlike Colloidal fd Virus through Surface Chemical Modification Langmuir, 26, 10593-10599.Google Scholar
  71. 71.
    Brumfield, S.; Willits, D.; Tang, L.; Johnson, J. E.; Douglas, T.; Young, M., Heterologous expression of the modified coat protein of Cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and function Journal of General Virology 2004, 85, 1049-1053.Google Scholar
  72. 72.
    Chatterji, A.; Ochoa, W.; Shamieh, L.; Salakian, S. P.; Wong, S. M.; Clinton, G.; Ghosh, P.; Lin, T. W.; Johnson, J. E., Chemical conjugation of heterologous proteins on the surface of cowpea mosaic virus Bioconjugate Chemistry 2004, 15, 807-813.Google Scholar
  73. 73.
    Nam, K. T.; Peelle, B. R.; Lee, S. W.; Belcher, A. M., Genetically driven assembly of nanorings based on the M13 virus Nano Letters 2004, 4, 23-27.Google Scholar
  74. 74.
    Ochoa, W. F.; Chatterji, A.; Lin, T. W.; Johnson, J. E., Generation and structural analysis of reactive empty particles derived from an icosahedral virus Chemistry & Biology 2006, 13, 771-778.Google Scholar
  75. 75.
    Steinmetz, N. F.; Lin, T.; Lomonossoff, G. P.; Johnson, J. E. In Viruses and Nanotechnology 2009; Vol. 327, p 23-58.Google Scholar
  76. 76.
    Uchida, M.; Flenniken, M. L.; Allen, M.; Willits, D. A.; Crowley, B. E.; Brumfield, S.; Willis, A. F.; Jackiw, L.; Jutila, M.; Young, M. J.; Douglas, T., Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles Journal of the American Chemical Society 2006, 128, 16626-16633.Google Scholar
  77. 77.
    Young, M.; Willits, D.; Uchida, M.; Douglas, T., Plant viruses as biotemplates for materials and their use in nanotechnology Annual Review of Phytopathology 2008, 46, 361-384.Google Scholar
  78. 78.
    Douglas, T.; Strable, E.; Willits, D.; Aitouchen, A.; Libera, M.; Young, M., Protein engineering of a viral cage for constrained nanomaterials synthesis Advanced Materials 2002, 14, 415-+.Google Scholar
  79. 79.
    Allen, M.; Bulte, J. W. M.; Liepold, L.; Basu, G.; Zywicke, H. A.; Frank, J. A.; Young, M.; Douglas, T., Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents Magnetic Resonance in Medicine 2005, 54, 807-812.Google Scholar
  80. 80.
    Aniagyei, S. E.; Kennedy, C. J.; Stein, B.; Willits, D. A.; Douglas, T.; Young, M. J.; De, M.; Rotello, V. M.; Srisathiyanarayanan, D.; Kao, C. C.; Dragnea, B., Synergistic Effects of Mutations and Nanoparticle Templating in the Self-Assembly of Cowpea Chlorotic Mottle Virus Capsids Nano Letters 2009, 9, 393-398.Google Scholar
  81. 81.
    Douglas, T.; Young, M., Host-guest encapsulation of materials by assembled virus protein cages Nature 1998, 393, 152-155.Google Scholar
  82. 82.
    Hu, Y. F.; Zandi, R.; Anavitarte, A.; Knobler, C. M.; Gelbart, W. M., Packaging of a polymer by a viral capsid: The interplay between polymer length and capsid size Biophysical Journal 2008, 94, 1428-1436.Google Scholar
  83. 83.
    Klem, M. T.; Young, M.; Douglas, T., Biomimetic synthesis of beta-TiO2 inside a viral capsid Journal of Materials Chemistry 2008, 18, 3821-3823.Google Scholar
  84. 84.
    Li, H. Y.; Klem, M. T.; Sebby, K. B.; Singel, D. J.; Young, M.; Douglas, T.; Idzerda, Y. U., Determination of anisotropy constants of protein encapsulated iron oxide nanoparticles by electron magnetic resonance Journal of Magnetism and Magnetic Materials 2009, 321, 175-180.Google Scholar
  85. 85.
    Liepold, L.; Anderson, S.; Willits, D.; Oltrogge, L.; Frank, J. A.; Douglas, T.; Young, M., Viral capsids as MRI contrast agents Magnetic Resonance in Medicine 2007, 58, 871-879.Google Scholar
  86. 86.
    Sikkema, F. D.; Comellas-Aragones, M.; Fokkink, R. G.; Verduin, B. J. M.; Cornelissen, J.; Nolte, R. J. M., Monodisperse polymer-virus hybrid nanoparticles Organic & Biomolecular Chemistry 2007, 5, 54-57.Google Scholar
  87. 87.
    Slocik, J. M.; Naik, R. R.; Stone, M. O.; Wright, D. W., Viral templates for gold nanoparticle synthesis Journal of Materials Chemistry 2005, 15, 749-753.Google Scholar
  88. 88.
    Suci, P. A.; Klem, M. T.; Arce, F. T.; Douglas, T.; Young, M., Assembly of multilayer films incorporating a viral protein cage architecture Langmuir 2006, 22, 8891-8896.Google Scholar
  89. 89.
    Chen, C.; Daniel, M. C.; Quinkert, Z. T.; De, M.; Stein, B.; Bowman, V. D.; Chipman, P. R.; Rotello, V. M.; Kao, C. C.; Dragnea, B., Nanoparticle-templated assembly of viral protein cages Nano Letters 2006, 6, 611-615.Google Scholar
  90. 90.
    Wang, Q.; Lin, T. W.; Tang, L.; Johnson, J. E.; Finn, M. G., Icosahedral virus particles as addressable nanoscale building blocks Angewandte Chemie-International Edition 2002, 41, 459-462.Google Scholar
  91. 91.
    Wang, Q.; Kaltgrad, E.; Lin, T. W.; Johnson, J. E.; Finn, M. G., Natural supramolecular building blocks: Wild-type cowpea mosaic virus Chemistry & Biology 2002, 9, 805-811.Google Scholar
  92. 92.
    Martinez-Morales, A. A.; Portney, N. G.; Zhang, Y.; Destito, G.; Budak, G.; Ozbay, E.; Manchester, M.; Ozkan, C. S.; Ozkan, M., Synthesis and Characterization of Iron Oxide Derivatized Mutant Cowpea Mosaic Virus Hybrid Nanoparticles Advanced Materials 2008, 20, 4816-+.Google Scholar
  93. 93.
    Kang, S.; Suci, P. A.; Broomell, C. C.; Iwahori, K.; Kobayashi, M.; Yamashita, I.; Young, M.; Douglas, T., Janus-like Protein Cages. Spatially Controlled Dual-Functional Surface Modifications of Protein Cages Nano Letters 2009, 9, 2360-2366.Google Scholar
  94. 94.
    Flenniken, M. L.; Uchida, M.; Liepold, L. O.; Kang, S.; Young, M. J.; Douglas, T., A Library of Protein Cage Architectures as Nanomaterials Viruses and Nanotechnology 2009, 327, 71-93.Google Scholar
  95. 95.
    Radloff, C.; Vaia, R. A.; Brunton, J.; Bouwer, G. T.; Ward, V. K., Metal nanoshell assembly on a virus bioscaffold Nano Letters 2005, 5, 1187-1191.Google Scholar
  96. 96.
    Shenton, W.; Douglas, T.; Young, M.; Stubbs, G.; Mann, S., Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus Advanced Materials 1999, 11, 253-+.Google Scholar
  97. 97.
    Niu, Z.; Liu, J.; Lee, L. A.; Bruckman, M. A.; Zhao, D.; Koley, G.; Wang, Q., Biological templated synthesis of water-soluble conductive polymeric nanowires Nano Letters 2007, 7, 3729-3733.Google Scholar
  98. 98.
    Niu, Z. W.; Bruckman, M.; Kotakadi, V. S.; He, J. B.; Emrick, T.; Russell, T. P.; Yang, L.; Wang, Q., Study and characterization of tobacco mosaic virus head-to-tail assembly assisted by aniline polymerization Chemical Communications 2006, 3019-3021.Google Scholar
  99. 99.
    Lim, J. S.; Kim, S. M.; Lee, S. Y.; Stach, E. A.; Culver, J. N.; Harris, M. T., Formation of Au/Pd Alloy Nanoparticles on TMV Journal of Nanomaterials 2010.Google Scholar
  100. 100.
    Kumagai, S.; Yoshii, S.; Matsukawa, N.; Nishio, K.; Tsukamoto, R.; Yamashita, I., Self-aligned placement of biologically synthesized Coulomb islands within nanogap electrodes for single electron transistor Applied Physics Letters 2009, 94.Google Scholar
  101. 101.
    Gorzny, M. L.; Walton, A. S.; Evans, S. D., Synthesis of High-Surface-Area Platinum Nanotubes Using a Viral Template Advanced Functional Materials 2010, 20, 1295-1300.CrossRefGoogle Scholar
  102. 102.
    Bromley, K. M.; Patil, A. J.; Perriman, A. W.; Stubbs, G.; Mann, S., Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles Journal of Materials Chemistry 2008, 18, 4796-4801.CrossRefGoogle Scholar
  103. 103.
    Dujardin, E.; Peet, C.; Stubbs, G.; Culver, J. N.; Mann, S., Organization of metallic nanoparticles using tobacco mosaic virus templates Nano Letters 2003, 3, 413-417.CrossRefGoogle Scholar
  104. 104.
    Balci, S.; Bittner, A. M.; Hahn, K.; Scheu, C.; Knez, M.; Kadri, A.; Wege, C.; Jeske, H.; Kern, K., Copper nanowires within the central channel of tobacco mosaic virus particles Electrochimica Acta 2006, 51, 6251-6257.CrossRefGoogle Scholar
  105. 105.
    Knez, M.; Bittner, A. M.; Boes, F.; Wege, C.; Jeske, H.; Maiss, E.; Kern, K., Biotemplate synthesis of 3-nm nickel and cobalt nanowires Nano Letters 2003, 3, 1079-1082.CrossRefGoogle Scholar
  106. 106.
    Plascencia-Villa, G.; Saniger, J. M.; Ascencio, J. A.; Palomares, L. A.; Ramirez, O. T., Use of Recombinant Rotavirus VP6 Nanotubes as a Multifunctional Template for the Synthesis of Nanobiomaterials Functionalized With Metals Biotechnology and Bioengineering 2009, 104, 871-881.CrossRefGoogle Scholar
  107. 107.
    Kobayashi, M.; Seki, M.; Tabata, H.; Watanabe, Y.; Yamashita, I., Fabrication of Aligned Magnetic Nanoparticles Using Tobamoviruses Nano Letters 2010, 10, 773-776.CrossRefGoogle Scholar
  108. 108.
    Avery, K. N.; Schaak, J. E.; Schaak, R. E., M13 Bacteriophage as a Biological Scaffold for Magnetically-Recoverable Metal Nanowire Catalysts: Combining Specific and Nonspecific Interactions To Design Multifunctional Nanocomposites Chemistry of Materials 2009, 21, 2176-2178.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Chemistry & Biomolecular ScienceClarkson UniversityPotsdamUSA

Personalised recommendations