Skip to main content

On-Line Testing and Test Generation

  • Chapter
  • First Online:
  • 1030 Accesses

Abstract

In this chapter, we present on-line testing and test-generation techniques for digital microfluidic biochips. First we present an on-line testing method for digital microfluidic biochips. This method interleaves the implementation of the microfluidic compactor with bioassays in functional mode. An optimization method is presented to schedule logic AND operations in the compactor to minimize the end time for the compaction procedure. Next we present an automatic test pattern generation (ATPG) method for non-regular digital microfluidic chips. The ATPG method can generate test patterns to detect catastrophic defects in non-regular arrays where the full reconfigurability of the digital microfluidic platform is not utilized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Y. Zhao, K. Chakrabarty, “On-line testing of lab-on-chip using digital microfluidic compactors" in Proceedings of IEEE International On-line Testing, Symposium, 2008, pp. 213–218

    Google Scholar 

  2. Y. Zhao, K. Chakrabarty, On-line testing of lab-on-chip using reconfigurable digital-microfluidic compactors. Int. J. Parallel Prog. 37, 370–388 (2009)

    Article  MATH  Google Scholar 

  3. F. Su, S. Ozev, K. Chakrabarty, Concurrent testing of digital microfluidics-based biochips. ACM Trans. Des. Autom. Electron. Syst. 11, 442–464 (2006)

    Article  Google Scholar 

  4. V. Srinivasan, V.K. Pamula, M.G. Pollack, R.B. Fair, Clinical diagnositics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform in Proceedings of MicroTAS, 2003, pp. 1287–290

    Google Scholar 

  5. Y. Zhao, K. Chakrabarty, Testing of low-cost digital microfluidic biochips with non-regular array layouts in Proceedings of IEEE Asian Test Symposium, 2010)

    Google Scholar 

  6. Advanced Liquid Logic, http://www.liquid-logic.com

  7. F. Su, W. Hwang, A. Mukherjee, K. Chakrabarty, Testing and diagnosis of realistic defects in digital microfluidic biochips. J. Electron. Test. Theory and Appl. 23, 219–233 (2007)

    Article  Google Scholar 

  8. F. Su, S. Ozev, K. Chakrabarty, Test planning and test resource optimization for droplet-based microfluidic systems. J. Electron. Test. Theory Appl. 22, 199–210 (2006)

    Article  Google Scholar 

  9. M.L. Bushnell, V.D. Agrawal, Essentials of Electronic Testing for Digital Memory and Mixed-Signal VLSI Circuits (Kluwer Academic Publishers, Netherlands, 2000)

    Google Scholar 

  10. L. Luan, R.D. Evans, N.M. Jokerst, R.B. Fair, Integrated optical sensor in a digital microfluidic platform. IEEE Sens. J. 8, 628–635 (2008)

    Article  Google Scholar 

  11. E.W. Dijkstra, A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Sista, Z. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A. Eckhardt, M.G. Pollack, V.K. Pamula, Development of a digital microfluidic platform for point of care testing. Lab on a Chip 8, 2091–2104 (2008)

    Article  Google Scholar 

  13. Y. Zhao, K. Chakrabarty, Pin-count-aware online testing of digital microfluidic biochips in Proceedings of IEEE VLSI Test Symposium, 2010, pp. 111–116

    Google Scholar 

  14. T. Xu, W. Hwang, F. Su, and K. Chakrabarty, Automated design of pin-constrained digital microfluidic biochips under droplet-interference constraints. ACM J. Emer. Technol. Comput. Syst. 3, 14.1–14.23 (2007)

    Google Scholar 

  15. T. Xu, K. Chakrabarty, Design-for-testability for digital microfluidic biochips in Proceedings of IEEE VLSI Tes, Symposium, 2009, pp. 309–314

    Google Scholar 

  16. T. Xu, K. Chakrabarty, Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips in Proceedings of IEEE/ACM Design Automation Conference, 2008, pp. 173–178

    Google Scholar 

  17. F. Su, K. Chakrabarty, High-level synthesis of digital microfluidic biochips. ACM J. Emer. Technol. Comput. Syst. 3, 16.1–16.32, 2008

    Google Scholar 

  18. H. Ren, Electrowetting-Based Sample Preparation: An Initial Study for Droplet Transportation, Creation and On-chip Digital Dilution. PhD Thesis, Duke University, Durham, NC, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhao .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhao, Y., Chakrabarty, K. (2013). On-Line Testing and Test Generation. In: Design and Testing of Digital Microfluidic Biochips. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0370-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0370-8_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0369-2

  • Online ISBN: 978-1-4614-0370-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics