Advertisement

On-Line Testing and Test Generation

  • Yang Zhao
  • Krishnendu Chakrabarty
Chapter

Abstract

In this chapter, we present on-line testing and test-generation techniques for digital microfluidic biochips. First we present an on-line testing method for digital microfluidic biochips. This method interleaves the implementation of the microfluidic compactor with bioassays in functional mode. An optimization method is presented to schedule logic AND operations in the compactor to minimize the end time for the compaction procedure. Next we present an automatic test pattern generation (ATPG) method for non-regular digital microfluidic chips. The ATPG method can generate test patterns to detect catastrophic defects in non-regular arrays where the full reconfigurability of the digital microfluidic platform is not utilized.

Keywords

Clock Cycle Output Port Test Pattern Testing Step Integer Linear Programming Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Y. Zhao, K. Chakrabarty, “On-line testing of lab-on-chip using digital microfluidic compactors" in Proceedings of IEEE International On-line Testing, Symposium, 2008, pp. 213–218Google Scholar
  2. 2.
    Y. Zhao, K. Chakrabarty, On-line testing of lab-on-chip using reconfigurable digital-microfluidic compactors. Int. J. Parallel Prog. 37, 370–388 (2009)zbMATHCrossRefGoogle Scholar
  3. 3.
    F. Su, S. Ozev, K. Chakrabarty, Concurrent testing of digital microfluidics-based biochips. ACM Trans. Des. Autom. Electron. Syst. 11, 442–464 (2006)CrossRefGoogle Scholar
  4. 4.
    V. Srinivasan, V.K. Pamula, M.G. Pollack, R.B. Fair, Clinical diagnositics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform in Proceedings of MicroTAS, 2003, pp. 1287–290Google Scholar
  5. 5.
    Y. Zhao, K. Chakrabarty, Testing of low-cost digital microfluidic biochips with non-regular array layouts in Proceedings of IEEE Asian Test Symposium, 2010)Google Scholar
  6. 6.
    Advanced Liquid Logic, http://www.liquid-logic.com
  7. 7.
    F. Su, W. Hwang, A. Mukherjee, K. Chakrabarty, Testing and diagnosis of realistic defects in digital microfluidic biochips. J. Electron. Test. Theory and Appl. 23, 219–233 (2007)CrossRefGoogle Scholar
  8. 8.
    F. Su, S. Ozev, K. Chakrabarty, Test planning and test resource optimization for droplet-based microfluidic systems. J. Electron. Test. Theory Appl. 22, 199–210 (2006)CrossRefGoogle Scholar
  9. 9.
    M.L. Bushnell, V.D. Agrawal, Essentials of Electronic Testing for Digital Memory and Mixed-Signal VLSI Circuits (Kluwer Academic Publishers, Netherlands, 2000)Google Scholar
  10. 10.
    L. Luan, R.D. Evans, N.M. Jokerst, R.B. Fair, Integrated optical sensor in a digital microfluidic platform. IEEE Sens. J. 8, 628–635 (2008)CrossRefGoogle Scholar
  11. 11.
    E.W. Dijkstra, A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    R. Sista, Z. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A. Eckhardt, M.G. Pollack, V.K. Pamula, Development of a digital microfluidic platform for point of care testing. Lab on a Chip 8, 2091–2104 (2008)CrossRefGoogle Scholar
  13. 13.
    Y. Zhao, K. Chakrabarty, Pin-count-aware online testing of digital microfluidic biochips in Proceedings of IEEE VLSI Test Symposium, 2010, pp. 111–116Google Scholar
  14. 14.
    T. Xu, W. Hwang, F. Su, and K. Chakrabarty, Automated design of pin-constrained digital microfluidic biochips under droplet-interference constraints. ACM J. Emer. Technol. Comput. Syst. 3, 14.1–14.23 (2007)Google Scholar
  15. 15.
    T. Xu, K. Chakrabarty, Design-for-testability for digital microfluidic biochips in Proceedings of IEEE VLSI Tes, Symposium, 2009, pp. 309–314Google Scholar
  16. 16.
    T. Xu, K. Chakrabarty, Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips in Proceedings of IEEE/ACM Design Automation Conference, 2008, pp. 173–178Google Scholar
  17. 17.
    F. Su, K. Chakrabarty, High-level synthesis of digital microfluidic biochips. ACM J. Emer. Technol. Comput. Syst. 3, 16.1–16.32, 2008Google Scholar
  18. 18.
    H. Ren, Electrowetting-Based Sample Preparation: An Initial Study for Droplet Transportation, Creation and On-chip Digital Dilution. PhD Thesis, Duke University, Durham, NC, 2004.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Advanced Micro DevicesNashuaUSA
  2. 2.Duke University ECEDurhamUSA

Personalised recommendations