Advertisement

Introduction

  • Yang Zhao
  • Krishnendu Chakrabarty
Chapter

Abstract

Digital microfluidics is an emerging technology that provides fluid-handling capability on a chip. Biochips based on digital microfluidics have therefore enabled the automation of laboratory procedures in biochemistry. By reducing the rate of sample and reagent consumption, digital microfluidic biochips allow continuous sampling and analysis for real-time biochemical analysis, with application to clinical diagnostics, immunoassays, and DNA sequencing. Recent advances in technology and applications serve as a powerful driver for research on computer-aided design (CAD) tools for biochips. This book is focused on a design automation framework that addresses chip synthesis, droplet routing, control-pin mapping, testing and diagnosis, and error recovery. In contrast to prior work on automated design techniques for digital microfluidics, the emphasis here is on practical CAD optimization methods that can target different design problems in a unified manner. Constraints arising from the underlying technology and the application domain are directly incorporated in the optimization framework.

Keywords

Light Emit Diode Automatic Test Pattern Generation Test Droplet Euler Path Digital Microfluidics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T.H. Schulte, R.L. Bardell, B.H. Weigl, Microfluidic technologies in clinical diagnostics. Clinica. Chimica. Acta. 321, 1–10 (2002)CrossRefGoogle Scholar
  2. 2.
    R.B. Fair, A. Khlystov, T.D. Tailor, V. Ivanov, R.D. Evans, P.B. Griffin, V. Srinivasan, V.K. Pamula, M.G. Pollack, and J. Zhou, Chemical and biological applications of digital-microfluidic devices. IEEE Des. Test Comput. 24, 10–24 (2007)Google Scholar
  3. 3.
    R.B. Fair, Digital microlfuidics: is a true lab-on-a-chip possible? Microfluid. Nanofluid. 3, 245–281 (2007)CrossRefGoogle Scholar
  4. 4.
    S.K. Cho, H. Moon, C.-J. Kim, Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J. Microelectromech. Syst. 12(1), 70–80 (2003)CrossRefGoogle Scholar
  5. 5.
    I.B.-Nad, H. Yang, P.S. Park, A.R. Wheeler, Digital microfluidics for cell-based assays, Lab Chip, 8, 519–526 (2008)Google Scholar
  6. 6.
    E. Verpoorte, N.F.D. Rooij, Microfluidics meets MEMS. Proc. IEEE 91, 930–953 (2003)CrossRefGoogle Scholar
  7. 7.
    T. Thorsen, S. Maerkl, S. Quake, Microfluidic large-scale integration. Science 298, 580–584 (2002)CrossRefGoogle Scholar
  8. 8.
    M.G. Pollack, R.B. Fair, A.D. Shenderov, Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett. 77, 1725–1726 (2000)CrossRefGoogle Scholar
  9. 9.
    V. Srinivasan, V.K. Pamula, M.G. Pollack, R.B. Fair, Clinical diagnositics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform, Proc. MicroTAS, 1287–1290 (2003)Google Scholar
  10. 10.
    V. Srinivasan, V.K. Pamula, R.B. Fair, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids, Lab Chip, 310–315 (2004)Google Scholar
  11. 11.
    P. Paik, V.K. Pamula, M.G. Pollack, K. Chakrabarty, Coplanar digital microfluidics using standard printed circuit board processes, Proc. MicroTAS, 566–568 (2005)Google Scholar
  12. 12.
    Silicon Biosystems. www.siliconbiosystems.comGoogle Scholar
  13. 13.
    G. Medoro, N. Manaresi, A. Leonardi, L. Altomare, M. Tartagni, R. Guerrieri, A lab-on-a-chip for cell detection and manipulation. IEEE Sens. J. 3, 317–325 (2003)CrossRefGoogle Scholar
  14. 14.
    A.B. Fuchs, A. Romani, D. Freida, G. Medoro, M. Abonnenc, L. Altomare, I. Chartier, D. Guergour, C. Villiers, P.N. Marche, M. Tartagni, R. Guerrieri, F. Chatelain, N. Manaresi, Electronic sorting and recovery of single live cells from microlitre sized samples. Lab Chip 6, 121–126 (2006)CrossRefGoogle Scholar
  15. 15.
    T. Xu, K. Chakrabarty, V.K. Pamula, Design and optimization of a digital microfluidic biochip for protein crystallization. in Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, (2008), pp. 297–301Google Scholar
  16. 16.
    K. Chakrabarty, F. Su, Digital Microfluidic Biochips: Synthesis, Testing, and Reconfiguration Techniques (CRC Press, Boca Raton, 2006)CrossRefGoogle Scholar
  17. 17.
    K. Chakrabarty, T. Xu, Digital Microfluidic Biochips: Design and Optimization (CRC Press, Boca Raton, 2010)CrossRefGoogle Scholar
  18. 18.
    F. Su, Synthesis, Testing, and Reconfiguration Techniques for Digital Microfluidic Biochips, Ph.D thesis, Duke University, Durham, NC, 2006Google Scholar
  19. 19.
    T. Xu, Optimization Tools for the Design of Reconfigurable Digital Microfluidic Biochips, Ph.D thesis, Duke University, Durham, NC, 2008Google Scholar
  20. 20.
    K.D. Dorfman, M. Chabert, J.H. Codarbox, G. Rousseau, P. Cremoux, J.L. Viovy, Contamination-free continuous flow microfluidic polymerase chain reaction for quantitative and clinical applications. Anal Chem. 77, 3700–3704 (2005)CrossRefGoogle Scholar
  21. 21.
    H. Moon, A.R. Wheeler, R.L. Garrell, J.A. Loo, C.-J. Kim, An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS. Lab Chip 6, 1213–1219 (2006)CrossRefGoogle Scholar
  22. 22.
    P. Paik, V.K. Pamula, K. Chakrabarty, Adaptive Cooling of Integrated Circuits using Digital Microfluidics (Artech House, Norwood, 2007)Google Scholar
  23. 23.
    P. Paik, V.K. Pamula, M.G. Pollack, R.B. Fair, Electrowetting-based droplet mixers for microfluidic systems. Lab Chip 3, 28–33 (2003)CrossRefGoogle Scholar
  24. 24.
    S.-W. Seo, S.-Y. Cho, S. Huang, J. Shin, N.M. Jokerst, A.S. Brown, M.A. Brooke, High-speed large-area inverted InGaAs thin-film metal-semiconductor-metal photodetectors. IEEE J. Special Top. Quantum Electron. 10, 686–693 (2004)CrossRefGoogle Scholar
  25. 25.
    S.-Y. Cho, S.-W. Seo, M.A. Brooke, N.M. Jokerst, Integrated detectors for embedded optical interconnections on electrical boards, modules, and integrated circuits. IEEE J. Sel. Top. Quantum Electron. 8, 1427–1434 (2002)CrossRefGoogle Scholar
  26. 26.
    S.-W. Seo, K.-K. Lee, S. Kang, S. Huang, W.A. Doolittle, N.M. Jokerst, A.S. Brown, M.A. Brooke, The heterogeneous integration of GaN thin-film metal-semiconductor-metal photodetectors onto silicon. IEEE Photonics Tech. Lett. 14, 185–187 (2002)CrossRefGoogle Scholar
  27. 27.
    L. Luan, R.D. Evans, N.M. Jokerst, R.B. Fair, Integrated optical sensor in a digital microfluidic platform. IEEE Sens. J. 8, 628–635 (2008)CrossRefGoogle Scholar
  28. 28.
    G. Minas, J.C. Ribeiro, R.F. Wolffenbuttel, J.H. Correia, On-chip integrated CMOS optical detection microsystem for spectrophotometric analyses in biological microfluidic systems. in Proceedings of the IEEE International Symposium on Industrial Electronics, (2005), pp. 1133–1138Google Scholar
  29. 29.
    V. Srinivasan, V.K. Pamula, P. Paik, R.B. Fair, Protein stamping for MALDI mass spectrometry using an electrowetting-based microfluidic platform. Proc. Soc. Photogr. Instrum. Eng. 5591, 26–32 (2004)Google Scholar
  30. 30.
    H. Ren, Electrowetting-Based Sample Preparation: An Initial Study for Droplet Transportation, Creation and On-chip Digital Dilution, Ph.D thesis, Duke University, Durham, NC, 2004Google Scholar
  31. 31.
    Y.-Y. Lin, R.D. Evans, E. Welch, B.-N. Hsu, A.C. Madison, R.B. Fair, Low voltage electrowetting-on-dielectric platform using multi-layer insulators. Sen. Actuators B: Chem. 150, 465–470 (2010)CrossRefGoogle Scholar
  32. 32.
    K.F. Bohringer, Modeling and controlling parallel tasks in droplet-based microfluidic systems. IEEE Transact. Comput. Aided Des. Integr. Circuits Syst. 25, 334–344 (2006)CrossRefGoogle Scholar
  33. 33.
    E.J. Griffith, S. Akella, M.K. Goldberg, Performance characterization of a reconfigurable planar-array digital microfluidic system. IEEE Transact. Comput. Aided Des. Integr. Circuits Syst. 25, 345–357 (2006)CrossRefGoogle Scholar
  34. 34.
    M. Cho, D.Z. Pan, A high-performance droplet router for digital microfluidic biochips. in Proceedings of the ACM International Symposium on Physical Design, (2008), pp. 200–206Google Scholar
  35. 35.
    E. Maftei, P. Pop, J. Madsen, T. Stidsen, Placement-aware architectural synthesis of digital microfluidic biochips using ILP. in Proceedings of the International Conference on Very Large Scale Integration of System on Chip, ( 2008), pp. 425–430Google Scholar
  36. 36.
    E. Maftei, P. Pop, J. Madsen, Tabu search-based synthesis of dynamically reconfigurable digital microfluidic biochips. in Proceedings of the International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, (2009), pp. 195–204Google Scholar
  37. 37.
    A.J. Ricketts, K. Irick, N. Vijaykrishnan, M.J. Irwin, Priority scheduling in digital microfluidics-based biochips. in Proceedings of the IEEE/ACM Design, Automation and Test in Europe Conference, (2006), pp. 329–334Google Scholar
  38. 38.
    S. Roy, B.B. Bhattacharya, K. Chakrabarty, Optimization of dilution and mixing of biochemical samples using digital microfluidic biochips. IEEE Transact. Comput. Aided Des. Integr. Circuits Syst. 29, 1696–1708 (2010)CrossRefGoogle Scholar
  39. 39.
    S. Roy, B.B. Bhattacharya, P.P. Chakrabarti, K. Chakrabarty, Layout-aware solution preparation for biochemical analysis on a digital microfluidic biochip. in Proceedings of the IEEE International Conference on VLSI Design, (2011)Google Scholar
  40. 40.
    S. Roy, B.B. Bhattacharya, K. Chakrabarty, Waste-aware dilution and mixing of biochemical samples with digital microfluidic biochips accepted for publication. in Proceedings of the IEEE/ACM Design, Automation and Test in Europe Conference, (2011)Google Scholar
  41. 41.
    F. Su, K. Chakrabarty, High-level synthesis of digital microfluidic biochips. ACM J. Emerg. Technol. Comput. Syst. 3, 16.1-16.32 (2008)Google Scholar
  42. 42.
    F. Su, K. Chakrabarty, Unified high-level synthesis and module placement for defect-tolerant microfluidic biochips. in Proceedings of the IEEE/ACM Design Automation Conference, (2005), pp. 825–830Google Scholar
  43. 43.
    F. Su, K. Chakrabarty, Module placement for fault-tolerant microfluidics-based biochips. ACM Transact. Des. Autom. Electron. Syst. 11, 682–710 (2006)CrossRefGoogle Scholar
  44. 44.
    F. Su, K. Chakrabarty, R.B. Fair, Microfluidics-based biochips: technology issues, implementation platforms, and design-automation challenges. IEEE Transact. Comput. Aided Des. Integr. Circuits Syst. 25, 211–223 (2006)CrossRefGoogle Scholar
  45. 45.
    T. Xu, K. Chakrabarty, Integrated droplet routing in the synthesis of microfluidic biochips. in Proceedings of the IEEE/ACM Design Automation Conference, (2007), pp. 948–953Google Scholar
  46. 46.
    T. Xu, K. Chakrabarty, Defect-aware high-level synthesis and module placement for microfluidic biochips. IEEE Transact. Biomedical Circuits Syst. 2, 50–62 (2008)CrossRefGoogle Scholar
  47. 47.
    T. Xu, K. Chakrabarty, Integrated droplet routing and defect tolerance in the synthesis of digital microfluidic biochips, ACM J. Emerg. Technol. Comput. Syst. 4, pp. 11.1-11.24 (2008)Google Scholar
  48. 48.
    P.-H. Yuh, C.L. Yang, C.W. Chang, Placement of defect-tolerant digital microfluidic biochips using the T-tree formulation, ACM J. Emerg. Technol. Comput. Syst. 3, pp. 13.1-13.32 (2007)Google Scholar
  49. 49.
    P.-H. Yuh, C.-L. Yang, Y.-W. Chang, BioRoute: A network flow based routing algorithm for digital microfluidic biochips. in Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, (2007), pp. 752–757Google Scholar
  50. 50.
    P.-H. Yuh, S. Sapatnekar, C.-L. Yang, Y.-W. Chang, A progressive-ILP based routing algorithm for cross-referencing biochips. in Proceedings of the IEEE/ACM Design Automation Conference, (2008), pp. 284–289Google Scholar
  51. 51.
    J. Zeng, Modeling and simulation of electrified droplets and its application to computer-aided design of digital microfluidics. IEEE Transact. Comput. Aided Des. Integr. Circuits Syst. 25, 224–233 (2006)CrossRefGoogle Scholar
  52. 52.
    S.W. Mahfoud, D.E. Goldberg, Parallel recombinative simulated annealing: a genetic algorithm. Parallel Comput. 21, 1–28 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    X. Zhang, F. Proosdij, H.G. Kerkhoff, A droplet routing technique for fault-tolerant digital microfluidic devices. in IEEE International Mixed-Signal, Sensors, and Systems Test, Workshop, (2008), pp. 1–7Google Scholar
  54. 54.
    F. Su, W. Hwang, K. Chakrabarty, Droplet routing in the synthesis of digital microfluidic biochips. in Proceedings of the IEEE/ACM Design, Automation and Test in Europe Conference, (2006), pp. 323–328Google Scholar
  55. 55.
    T.-W Huang, C.-H. Lin, T.-Y. Ho, A contamination aware droplet routing algorithm for digital microfluidic biochips. in Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, (2009), pp. 151–156Google Scholar
  56. 56.
    T.-W. Huang, T.-Y. Ho, A fast routability and performance driven droplet routing algorithm for digital microfluidic biochips. in Proceedings of the IEEE International Conference on, Computer Design, (2009), pp. 445–450Google Scholar
  57. 57.
    P. Roy, T. Samanta, H. Rahaman, P. Dasgupta, New techniques for droplet routing in digital microfluidic biochips. in Proceedings of the IEEE VLSI Design and Test Symposium, Paper 80, (2010)Google Scholar
  58. 58.
    M. Campas, I. Katakis, DNA biochip arraying, detection and amplification strategies. Trends Anal. Chem. 23, 49–62 (2003)CrossRefGoogle Scholar
  59. 59.
    K. Sermon, V. Goossens, S. Seneca, W. Lissens, A. Vos, M. Vandervorst, A. Steirteghem, I. Liebaers, Preimplantation diagnosis for Huntington’s disease (HD): clinical application and analysis of the HD expansion in affected embryos. Prenat. Diagn. 18, 1427–1436 (1999)CrossRefGoogle Scholar
  60. 60.
    T. Xu, K. Chakrabarty, Parallel scan-like test and multiple-defect diagnosis for digital microfluidic biochips. IEEE Transact. Biomedical Circuits Syst. 1, 148–158 (2007)CrossRefGoogle Scholar
  61. 61.
    Advanced Liquid Logic, http://www.liquid-logic.com
  62. 62.
    R. Sista, Z. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A. Eckhardt, M.G. Pollack, V.K. Pamula, Development of a digital microfluidic platform for point of care testing. Lab Chip 8, 2091–2104 (2008)CrossRefGoogle Scholar
  63. 63.
    Z. Hua, J.L. Rouse, A.E. Eckhardt, V. Srinivasan, V.K. Pamula, W.A. Schell, J.L. Benton, T.G. Mitchell, M.G. Pollack, Mutiplexed real-time polymerase chain reaction on a digital microfluidic platform. Anal. Chem. 82, 2310–2316 (2010)CrossRefGoogle Scholar
  64. 64.
    C.-Y. Lin, Y.-W. Chang, Cross contamination aware design methodology for pin-constrained digital microfludic biochips. in Proceedings of the IEEE/ACM Design Automation Conference, (2010), pp. 641–646Google Scholar
  65. 65.
    C.-Y. Lin, Y.-W. Chang, ILP-based pin-count aware design methodology for microfluidic biochips. in Proceedings of the IEEE/ACM Design Automation Conference, (2009), pp. 258–263Google Scholar
  66. 66.
    S.-K. Fan, C. Hashi, C.-J. Kim, Manipulation of multiple droplets on N \(\times \) M grid by cross-reference EWOD driving scheme and pressure-contact packaging. in Proceedings of the MEMS, (2003), pp. 694–697Google Scholar
  67. 67.
    T. Xu, W. Hwang, F. Su, K. Chakrabarty, Automated design of pin-constrained digital microfluidic biochips under droplet-interference constraints. ACM J. Emerg. Technol. Comput. Syst. 3, 14.1-14.23 (2007)Google Scholar
  68. 68.
    T. Xu, K. Chakrabarty, Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips. in Proceedings of the IEEE/ACM Design Automation Conference, (2008), pp. 173–178Google Scholar
  69. 69.
    T. Xu, K. Chakrabarty, A droplet-manipulation method for achieving high-throughput in cross-referencing-based digital microfluidic biochips. IEEE Transact. Comput. Aided Des. Integr. Circuits Syst. 27, 1905–1917 (2008)CrossRefGoogle Scholar
  70. 70.
    Z. Xiao, E.F.Y. Young, CrossRouter: A droplet router for cross-referencing digital microfluidic biochips. in Proceedings of the Asia and South Pacific Design Automation Conference, (2010), pp. 269–274Google Scholar
  71. 71.
    T.-W. Huang, T.-Y. Ho, A two-stage ILP-based droplet routing algorithm for pin-constrained digital microfluidic biochips, in Proceedings of ACM International Symposium on Physical Design, (2010), pp. 201–208Google Scholar
  72. 72.
    T. Xu, K. Chakrabarty, Functional testing of digital microfluidic biochips, in Proceedings of IEEE International Test Conference, (2007), pp. 19.1-19.10Google Scholar
  73. 73.
    H.G. Kerkhoff, Testing of microelectronic biofluidic systems, IEEE Design Test Comput. 24, pp. 72–82, 2007Google Scholar
  74. 74.
    H.G. Kerkhoff, M. Acar, Testable design and testing of micro-electrofluidic arrays, in Proceedings of IEEE VLSI Test, Symposium, (2003), pp. 403–409Google Scholar
  75. 75.
    H.G. Kerkhoff, H.P.A. Hendriks, Fault modeling and fault simulation in mixed micro-fluidic microelectronic systems. J. Electron. Test. Theory Appl. 17, 427–437 (2001)CrossRefGoogle Scholar
  76. 76.
    Q. Gayem, H. Liu, A. Richardson, N. Burd, Built-in test solutions for the electrode structures in bio-fluidic microsystems in Proceedings of IEEE European Test, Symposium, (2009), pp. 73–78Google Scholar
  77. 77.
    F. Su, J. Zeng, Computer-aided design and test for digital microfluidics, IEEE Design Test Comput. 24, pp. 60–70, (2007)Google Scholar
  78. 78.
    F. Su, W. Hwang, A. Mukherjee, K. Chakrabarty, Testing and diagnosis of realistic defects in digital microfluidic biochips. J. Electron. Test. Theory Appl. 23, 219–233 (2007)CrossRefGoogle Scholar
  79. 79.
    F. Su, S. Ozev, K. Chakrabarty, Concurrent testing of digital microfluidics-based biochips. ACM Trans. Design Autom. Electron. Syst. 11, 442–464 (2006)CrossRefGoogle Scholar
  80. 80.
    F. Su, S. Ozev, K. Chakrabarty, Test planning and test resource optimization for droplet-based microfluidic systems. J. Electron. Test. Theory Appl. 22, 199–210 (2006)CrossRefGoogle Scholar
  81. 81.
    T. Xu, K. Chakrabarty, Design-for-testability for digital microfluidic biochips, in Proceedings IEEE VLSI Test, Symposium, (2009), pp. 309–314Google Scholar
  82. 82.
    V. Hlady, R.A. Wagenen, J.D. Andrade, Surface and Interfacial Aspects of Biomedical Polymers: Protein Adsorption, ed. by J.D. Andrade, (Plenum Press, New York, 1985), 2, p. 81Google Scholar
  83. 83.
    Y. Zhao, T. Xu, K. Chakrabarty, Broadcast electrode-addressing and scheduling methods for pin-constrained digital microfluidic biochips, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (2011, accepted)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Advanced Micro DevicesNashuaUSA
  2. 2.Duke University ECEDurhamUSA

Personalised recommendations