Skip to main content

Diversity Techniques

  • Chapter
  • First Online:
Fading and Shadowing in Wireless Systems
  • 1128 Accesses

Abstract

In this chapter, we investigat the impact of diversity in wireless channels. Our study is limited to those fading and shadowing models based on the Nakagami or gamma densities. The benefits of diversity can be understood by carrying out the computations of the error rates and outage probabilities. The error rates and outage probabilities show reductions with diversity. Maximal ratio combining (MRC) diversity provides maximum improvement in performance. We also explore the need to have diversity at the microlevel and macrolevel. This mitigates the channel impairments in shadowed fading channels. The hybrid diversity implemented at the microlevel through generalized selection combining offers a compromise between pure selection combining on one end and MRC on the other end. It must be understood that the trends in improvement with diversity will be similar regardless of the specific models used for fading or shadowing. There is a large body of published work available in the literature of wireless which examines diversity in fading and shadowed fading channels modeled using other density functions. The improvements seen in Weibull channels through the implementation of the GSC algorithm have been reported by several researchers (Bithas et al. 2003; Alouini and Simon (2006) Wireless Comm. & Mobile Comp. 6:1077–1084). Results on other diversity algorithms in Weibull channels are additionally available (Sagias et al. (2003) Electronics Letters 39(20):1472–1474; Sagias et al. (2004) Communications, IEEE Transactions on 52(7):1063–1067; Karagiannidis et al. (2005) Wireless Communications, IEEE Transactions on 4(3):841–846). While the diversity in generalized gamma channels was briefly discussed earlier on, several published results which undertook detailed studies of generalized gamma fading channels are available (Bithas et al. (2007a) Communications Letters, IEEE 11(12):964; Aalo et al. (2007) Communications, IET Proceedings 1(3):341–347; Samimi and Azmi (2008) Int. J. Electronics & Comm. (AEU) 62:496–605). The case of shadowed fading channels modeled using Rician-lognormal density has been studied by researchers (Wang and Stuber (1999) Vehicular Technology, IEEE Trans. on 48(2):429–436; Zhang and Aalo (2001) Communications, IEEE Transactions on 49(1):14–18). Diversity in Nakagami-Hoyt channels has also been studied (Iskander and Mathiopoulos (2005) Proceedings. IEEE 233–239; Zogas et al. (2005) Wireless Communications, IEEE Transactions on 4(2):374–379; Fraidenraich et al. (2008) Communications, IEEE Transactions on 56(2):183–188).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalo, V. (1995). “Performance of maximal-ratio diversity systems in a correlated Nakagami-fading environment.” Communications, IEEE Transactions on 43(8): 2360–2369.

    Article  Google Scholar 

  • Aalo, V. et al. (2005). Bit-Error Rate of Binary Digital Modulation Schemes in Generalized Gamma Fading Channels. Communications Letters, IEEE 9(2): 139–141.

    Article  Google Scholar 

  • Aalo, V., G. Efthymoglou, et al. (2007). “Performance of diversity receivers in generalised gamma fading channels.” Communications, IET Proceedings 1(3): 341–347.

    Article  MathSciNet  Google Scholar 

  • Abramowitz, M., I. A. Segun (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover Publications.

    Google Scholar 

  • Abu-Dayya, A. A. and N. C. Beaulieu (1994). “Analysis of switched diversity systems on Generalized fading channels.” Communications, IEEE Transactions on 42(11): 2959–2966.

    Google Scholar 

  • Abu-Dayya, A. A. and N. C. Beaulieu (1994a). “Micro- and macrodiversity NCFSK (DPSK) on shadowed Nakagami-fading channels.” Communications, IEEE Transactions on 42(9): 2693–2702.

    Google Scholar 

  • Abu-Dayya, A. and N. Beaulieu (1994b). “Switched diversity on microcellular Ricean channels.” Vehicular Technology, IEEE Transactions on 43(4): 970–976.

    Google Scholar 

  • Adamchik, V. (1995). “The evaluation of integrals of Bessel functions via G-function identities.” Journal of Computational and Applied Mathematics 64(3): 283–290.

    Article  MATH  MathSciNet  Google Scholar 

  • Al-Hussaini, E. and A. Al-Bassiouni (1985). “Performance of MRC Diversity Systems for the Detection of Signals with Nakagami Fading.” Communications, IEEE Transactions on 33(12): 1315–1319.

    Article  MathSciNet  Google Scholar 

  • Alouini, M. S. and M. K. Simon (1999). “Performance of coherent receivers with hybrid SC/MRC over Nakagami-m fading channels.” IEEE Transactions on Vehicular Technology 48(4): 1155–1164.

    Article  Google Scholar 

  • Alouini, M. S. and A. J. Goldsmith (1999). “A unified approach for calculating error rates of linearly modulated signals over generalized fading channels.” Communications, IEEE Transactions on 47(9): 1324–1334.

    Article  Google Scholar 

  • Alouini, M. S. and M. K. Simon (2000). “An MGF-based performance analysis of generalized selection combining over Rayleigh fading channels.” Communications, IEEE Transactions on 48(3): 401–415.

    Article  Google Scholar 

  • Alouini, M. S. and M. K. Simon (2002). “Dual diversity over correlated log-normal fading channels.” Communications, IEEE Transactions on 50(12): 1946–1959.

    Google Scholar 

  • Alouini, M.-S. and M. K. Simon, (2006). Performance of generalized selection combining in Weibull channels Wireless Comm. & Mobile Comp. 6: 1077–1084.

    Google Scholar 

  • Annamalai, A. (1997). “Analysis of selection diversity on Nakagami fading channels.” Electronics Letters 33(7): 548–549.

    Article  Google Scholar 

  • Annamalai, A., C. Tellambura, et al. (1999). “Exact evaluation of maximal-ratio and equal-gain diversity receivers for M-ary QAM on Nakagami fading channels.” Communications, IEEE Transactions on 47(9): 1335–1344.

    Article  Google Scholar 

  • Annamalai, A., C. Tellambura, et al. (2000). “Equal-gain diversity receiver performance in wireless channels.” Communications, IEEE Transactions on 48(10): 1732–1745.

    Article  Google Scholar 

  • Annamalai, A. and C. Tellambura (2001). A new approach to performance evaluation of generalized selection diversity receivers in wireless channels, IEEE. 4: 2309–2313.

    Google Scholar 

  • Annamalai, A., C. Tellambura, et al. (2001). “Simple and accurate methods for outage analysis in cellular mobile radio systems-a unified approach.” Communications, IEEE Transactions on 49(2): 303–316.

    Article  MATH  Google Scholar 

  • Annamalai, A. and C. Tellambura (2003). “Performance evaluation of generalized selection diversity systems over Nakagami-m fading channels.” Wireless Communications and Mobile Computing 3(1): 99–116.

    Article  Google Scholar 

  • Annamalai, A. et al. (2005). “A general method for calculating error probabilities over fading channels.” Communications, IEEE Transactions on 53(5): 841–852.

    Article  Google Scholar 

  • Beaulieu, N. C. (1990). “An infinite series for the computation of the complementary probability distribution function of a sum of independent random variables and its application to the sum of Rayleigh random variables.” Communications, IEEE Transactions on 38(9): 1463–1474.

    Article  Google Scholar 

  • Beaulieu, N. C. and A. A. Abu-Dayya (1991). “Analysis of equal gain diversity on Nakagami fading channels.” Communications, IEEE Transactions on 39(2): 225–234.

    Article  Google Scholar 

  • Blanco, M. and K. Zdunek (1979). “Performance and optimization of switched diversity systems for the detection of signals with Rayleigh fading.” Communications, IEEE Transactions on 27(12): 1887–1895.

    Article  MATH  Google Scholar 

  • Bdira, E. B. and Mermelstein, P. (1999). Exploiting macrodiversity with distributed antennas in microcellular CDMA systems. Wireless Personal Communications 9: 179–196.

    Article  Google Scholar 

  • Bernhardt, R. (1987). “Macroscopic Diversity in Frequency Reuse Radio Systems.” Selected Areas in Communications, IEEE Journal on 5(5): 862–870.

    Article  MathSciNet  Google Scholar 

  • Bithas, P. S. et al. (2005). Performance Analysis of a Class of GSC Receivers over Nonidentical Weibull Fading Channels. Vehicular Technology, IEEE Trans. on 54(6): 1963–1970.

    Google Scholar 

  • Bithas, P. S., N. C. Sagias, et al. (2007). “GSC diversity receivers over generalized-gamma fading channels.” Communications Letters, IEEE 11(12): 964.

    Google Scholar 

  • Bithas, P. S., P. Mathiopoulos, et al. (2007). “Diversity reception over generalized-K (KG) fading channels.” Wireless Communications, IEEE Transactions on 6(12): 4238–4243.

    Article  Google Scholar 

  • Brennan, D. G. (1959). Linear diversity combining techniques. Proceedings of IRE 47(1): 1075–1102.

    Google Scholar 

  • Butterworth, K. S., K. W. Sowerby, et al. (1997). “Correlated shadowing in an in-building propagation environment.” Electronics Letters 33(5): 420–422.

    Article  Google Scholar 

  • Charesh, U. (1979). Reception through Nakagami fading multipath channels with random delays. Communications, IEEE Trans. on 27(4): 657–670.

    Google Scholar 

  • Corazza, G. E. and F. Vatalaro (1994). “A Statistical Model for Land Mobile Satellite.” Vehicular Technology IEEE Transactions on 43(2): 738–742.

    Google Scholar 

  • Diggavi, S. (2001). “On achievable performance of spatial diversity fading channels.” Information Theory.” IEEE Transactions on 47(1): 308–325.

    Google Scholar 

  • Efthymoglou, G. and V. Aalo (1995). “Performance of RAKE receivers in Nakagami fading channel with arbitrary fading parameters.” Electronics Letters 31(18): 1610–1612.

    Article  Google Scholar 

  • Eng, T. et al. (1996). “Comparison of diversity combining techniques for Rayleigh-fading channels.” Communications, IEEE Transactions on 44(9): 1117–1129.

    Article  Google Scholar 

  • Fraidenraich, G., M. D. Yacoub, et al. (2008). “Second-order statistics for diversity-combining of non-identical correlated Hoyt signals.” Communications, IEEE Transactions on 56(2): 183–188.

    Article  Google Scholar 

  • Gil-Pelaez, J. (1951). “Note on the inversion theorem,” Biometrika, 38: 481–482

    MATH  MathSciNet  Google Scholar 

  • Giuli, D. (1986). “Polarization diversity in radars.” IEEE Proceedings 74(2): 245–269.

    Article  MathSciNet  Google Scholar 

  • Goldsmith, A. (2005). Wireless Communications. New York, Cambridge University Press.

    Google Scholar 

  • Gradshteyn, I. S., I. M. Ryzhik (2007). Table of integrals, series and products. Oxford, Academic.

    MATH  Google Scholar 

  • Hausman, A. H. (1954). “An Analysis of Dual Diversity Receiving Systems.” IRE Proceedings 42(6): 944–947.

    Article  MathSciNet  Google Scholar 

  • Haykin, S. S. (2001). Digital communications. New York, Wiley.

    Google Scholar 

  • Holm, H. and M. S. Alouini (2004). “Sum and difference of two squared correlated Nakagami variates in connection with the McKay distribution.” Communications, IEEE Transactions on 52(8): 1367–1376.

    Article  Google Scholar 

  • Iskander, C.-D. and Mathiopoulos (2005). Exact Performance Analysis of Dual-Branch Coherent Equal-Gain Combining in Nakagami-m, Rice and Hoyt Fading. Southeast Con, 2005. Proceedings. IEEE 233–239.

    Google Scholar 

  • Jakes, W. C. (1994). Microwave mobile communications. Piscataway, NJ, IEEE Press.

    Google Scholar 

  • Jeong, W.-C. and Chung, J.-M. (2005). Analysis of macroscopic diversity combining of MIMO signals in mobile communications. Int. J. Electron & Comm. (AEU) 59: 454–462.

    Article  Google Scholar 

  • Karagiannidis, G. K. et al. (2003). On the Multivariate Nakagami-m distribution with exponential correlation, Communications, IEEE Transactions on 51(8) 1240–1244.

    Article  Google Scholar 

  • Karagiannidis, G. K., D. A. Zogas, et al. (2005). “Equal-gain and maximal-ratio combining over nonidentical Weibull fading channels.” Wireless Communications, IEEE Transactions on 4(3): 841–846.

    Article  Google Scholar 

  • Karagiannidis, G. K. et al. (2007). “N*Nakagami: A novel statistical model for cascaded fading channels,” Communications, IEEE Transactions on 55(8) 1453–1458.

    Article  MathSciNet  Google Scholar 

  • Kong, N. and L. B. Milstein (1999). “Average SNR of a generalized diversity selection combining scheme.” Communications Letters, IEEE 3(3): 57–59.

    Article  Google Scholar 

  • Kotz, S. and J. Adams (1964). “Distribution of sum of identically distributed exponentially correlated gamma-variables.” The Annals of Mathematical Statistics: 277–283.

    Google Scholar 

  • Ko, Y.-C. et al. (2000). “Average SNR of dual selection combining over correlated Nakagami-m fading channels,” Communications Letters, IEEE 4(1): 12–14.

    Google Scholar 

  • Ma, Y. and C. C. Chai (2000). “Unified error probability analysis for generalized selection combining in Nakagami fading channels.” Selected Areas in Communications, IEEE Journal on 18(11): 2198–2210.

    Google Scholar 

  • Malhotra, J., A. K. Sharma, and R. S. Kaler (2008). “On the performance of wireless receiver in cascaded fading channel,” African J. Inf. & Comm. Tech. 4(3): 65–72.

    Google Scholar 

  • Malhotra, J., A. Sharma, et al. (2009). “On the performance analysis of wireless receiver using generalized-gamma fading model.” Annals of Telecommunications 64(1): 147–153.

    Article  Google Scholar 

  • Mallik, R. K. and M. Z. Win (2002). “Analysis of hybrid selection/maximal-ratio combining in correlated Nakagami fading.” Communications, IEEE Transactions on 50(8): 1372–1383.

    Article  Google Scholar 

  • Mathai, A. M. and R. K. Saxena (1973). Generalized hypergeometric functions with applications in statistics and physical sciences. Berlin, New York, Springer.

    MATH  Google Scholar 

  • Mathai, A. M (1993). A handbook of generalized special functions for statistical and physical sciences, Oxford University Press, Oxford, UK.

    MATH  Google Scholar 

  • Ming, K., M. S. Alouini, et al. (2002). “Outage probability and spectrum efficiency of cellular mobile radio systems with smart antennas.” Communications, IEEE Transactions on 50(12): 1871–1877.

    Article  Google Scholar 

  • Molisch, A. F. (2005). Wireless communications. Chichester, U. K. John Wiley & Sons.

    Google Scholar 

  • Mukherjee, S. and Avidor, D. (2003). Effect of microdiversity and correlated macrodiversity on outages in cellular systems Wireless Communications. IEEE Transactions on 2(1): 50–58.

    Google Scholar 

  • Nakagami, M. (1960). The m-distribution—A general formula of intensity distribution of rapid fading, in Statistical Methods in Radio Wave Propagation, W. C. Hoffman, Ed. Elmsford, NY: Pergamon.

    Google Scholar 

  • Ning, K. and L. B. Milstein (2000). “SNR of generalized diversity selection combining with nonidentical Rayleigh fading statistics.” Communications, IEEE Transactions on 48(8): 1266–1271.

    Article  Google Scholar 

  • Nomoto, S., et al. (2004). Multivariate gamma distributions and their numerical evaluations for M branch selection diversity Electronics and Communications in Japan Part 1 87(8):1–12.

    Google Scholar 

  • Nuttall, A. H. (1969). “Numerical evaluation of cumulative probability distribution functions directly from characteristic functions.” IEEE Proceedings 57(11): 2071–2072.

    Article  Google Scholar 

  • Nuttall, A. H. (1975). “Some integrals involving the Q_M function (Corresp.).” Information Theory, IEEE Transactions on 21(1): 95–96.

    Google Scholar 

  • Parsons, J. D. et al. (1975). “Diversity techniques for mobile radio reception.” Radio and Electronic Engineer 45(7): 357–367.

    Article  Google Scholar 

  • Papoulis, A. and S. U. Pillai (2002). Probability, random variables, and stochastic processes. Boston, McGraw-Hill.

    Google Scholar 

  • Perini, P. L. and C. L. Holloway (1998). “Angle and space diversity comparisons in different mobile radio environments.” Antennas and Propagation, IEEE Transactions on 46(6): 764–775.

    Article  Google Scholar 

  • Piboongungon, T. and V. A. Aalo (2004). “Outage probability of L-branch selection combining in correlated lognormal fading channels.” Electronics Letters 40(14): 886–888.

    Article  Google Scholar 

  • Rappaport, T. S. (2002). Wireless communications: principles and practice. Upper Saddle River, N.J., Prentice Hall PTR.

    Google Scholar 

  • Sagias, N., D. Zogas, et al. (2003). “Performance analysis of switched diversity receivers in Weibull fading.” Electronics Letters 39(20): 1472–1474.

    Article  Google Scholar 

  • Sagias, N. C., G. K. Karagiannidis, et al. (2004). “Performance analysis of dual selection diversity in correlated Weibull fading channels.” Communications, IEEE Transactions on 52(7): 1063–1067.

    Article  Google Scholar 

  • Samimi, H. and Azmi, P. (2008). “Performance analysis of equal gain diversity receivers over generalized gamma fading channels.” Int. J. Electronics & Comm. (AEU) 62: 496–605.

    Article  Google Scholar 

  • Schwartz, M. et al. (1996). Communication Systems and Techniques. Piscataway, NJ., IEEE Press.

    Google Scholar 

  • Shankar, P. M. (2002). Introduction to Wireless Systems, New York, John Wiley.

    Google Scholar 

  • Shankar, P. (2006). “Performance Analysis of Diversity Combining Algorithms in Shadowed Fading Channels.” Wireless Personal Communications 37(1): 61–72.

    Article  MathSciNet  Google Scholar 

  • Shankar, P. (2010). “A Nakagami-N-gamma Model for Shadowed Fading Channels.” Wireless Personal Communications: 1–16.

    Google Scholar 

  • Shankar, P. (2010). “Statistical Models for Fading and Shadowed Fading Channels in Wireless Systems: A Pedagogical Perspective.” Wireless Personal Communications: 1–23.

    Google Scholar 

  • Shankar, P. M. (2008). “Analysis of microdiversity and dual channel macrodiversity in shadowed fading channels using a compound fading model.” AEU - International Journal of Electronics and Communications 62(6): 445–449.

    Article  Google Scholar 

  • Shankar, P. M. (2008). “Outage Probabilities of a MIMO Scheme in Shadowed Fading Channels with Micro- and Macrodiversity Reception.” Wireless Communications, IEEE Transactions on 7(6): 2015–2019.

    Article  MathSciNet  Google Scholar 

  • Shankar, P. M. (2009). “Macrodiversity and Microdiversity in Correlated Shadowed Fading Channels.” Vehicular Technology, IEEE Transactions on 58(2): 727–732.

    Article  Google Scholar 

  • Shankar, P. M. (2011). “Maximal ratio combining in independent identically distributed n Nakagami fading channels.” Communications, IET Proceedings on 5(3): 320–326.

    Article  Google Scholar 

  • Shankar, P. M. (2011) “'Performance of N*Nakagami cascaded fading channels in dual selection combining diversity,” IWCMC 2011, July 2011.

    Google Scholar 

  • Shankar, P. M. and C. Gentile (2010). Statistical Analysis of Short Term Fading and Shadowing in Ultra-Wideband Systems. Communications (ICC), 2010 IEEE International Conference on. 1–5.

    Google Scholar 

  • Simon, M. K. and M.-S. Alouini (2005). Digital communication over fading channels. Hoboken, N.J., Wiley-Interscience.

    Google Scholar 

  • Skraparlis, D., V. Sakarellos, et al. (2009). “Performance of N-branch receive diversity combining in correlated lognormal channels.” Communications Letters, IEEE 13(7): 489–491.

    Article  Google Scholar 

  • Skraparlis, D., M. Sandell, et al. (2010). “On the Effect of Correlation on the Performance of Dual Diversity Receivers in Lognormal Fading.” Communications Letters, IEEE 14(11): 1038–1040.

    Article  Google Scholar 

  • Sowerby, K. W. and A. G. Williamson (1992). “Outage possibilities in mobile radio systems suffering cochannel interference.” Selected Areas in Communications, IEEE Journal on 10(3): 516–522.

    Article  Google Scholar 

  • Steele, R. and L. Hanzó (1999). Mobile radio communications: second and third generation cellular and WATM systems. Chichester, England; New York, John Wiley & Sons, Inc.

    Google Scholar 

  • Stein, S. (1987). “Fading channel issues in system engineering.” Selected Areas in Communications, IEEE Journal on 5(2): 68–89.

    Article  Google Scholar 

  • Stuber, G. L. (2002). Principles of mobile communication. New York, Kluwer Academic.

    Google Scholar 

  • Tellambura, C. and A. Annamalai (1999). “An unified numerical approach for computing the outage probability for mobile radio systems.” Communications Letters, IEEE 3(4): 97–99.

    Article  Google Scholar 

  • Tellambura, C. (2008). “Bounds on the Distribution of a Sum of Correlated Lognormal Random Variables and Their Application.” Communications, IEEE Transactions on 56(8): 1241–1248.

    Article  Google Scholar 

  • Tellambura, C., A. Annamalai, et al. (2001). “Unified analysis of switched diversity systems in independent and correlated fading channels.” Communications, IEEE Transactions on 49(11): 1955–1965.

    Article  Google Scholar 

  • Tellambura, C. et al. (2003). “Closed form and infinite series solutions for the MGF of a dual-diversity selection combiner output in bivariate Nakagami fading.” Communications, IEEE Transactions on 51(4): 539–542.

    Article  Google Scholar 

  • Theofilakos, P., A. Kanatas, et al. (2008). “Performance of generalized selection combining receivers in K fading channels.” Communications Letters, IEEE 12(11): 816–818.

    Article  Google Scholar 

  • Van Wambeck, S. H. and A. H. Ross (1951). “Performance of Diversity Receiving Systems.” Proceedings of the IRE 39(3): 256–264.

    Article  Google Scholar 

  • Vaughan, R. G. and J. B. Andersen (1987). “Antenna diversity in mobile communications.” Vehicular Technology, IEEE Transactions on 36(4): 149–172.

    Article  Google Scholar 

  • Vaughan, R. G. (1990). “Polarization diversity in mobile communications.” Vehicular Technology, IEEE Transactions on 39(3): 177–186.

    Article  Google Scholar 

  • Wang, L.-C. and Stuber, G. L. (1999). Effects of Rician fading and branch correlation on local mean based macrodiversity cellular systems. Vehicular Technology, IEEE Trans. on 48(2):429–436.

    Google Scholar 

  • Wang, J. B., M. Zhao, et al. (1999). “A novel multipath transmission diversity scheme in TDD-CDMA systems.” Communications IEICE Transactions on EB 82: 1706–1709.

    Google Scholar 

  • Warren, D. (1992). A multivariate gamma distribution arising from a Markov model Stochastic Hydrology & Hydraulics 6: 183–190.

    Article  MATH  Google Scholar 

  • White, R. (1968). “Space Diversity on Line-of-Sight Microwave Systems.” Communication Technology, IEEE Transactions on 16(1): 119–133.

    Article  Google Scholar 

  • Win, M. Z. and Z. A. Kostic (1999). “Virtual path analysis of selective Rake receiver in dense multipath channels.” Communications Letters, IEEE 3(11): 308–310.

    Article  Google Scholar 

  • Win, M. Z., G. Chrisikos, et al. (2000). “Performance of Rake reception in dense multipath channels: Implications of spreading bandwidth and selection diversity order.” Selected Areas in Communications, IEEE Journal on 18(8): 1516–1525.

    Article  Google Scholar 

  • Wojnar, A. H. (1986). “Unknown bounds on performance in Nakagami channels,” Communications, IEEE Transactions on 34(1): 22–24.

    Article  Google Scholar 

  • Wolfram (2011). http://functions.wolfram.com/, Wolfram Research, Inc.

    Google Scholar 

  • Wongtraitrat, W. and P. Supnithi (2009). “Performance of digital modulation in double Nakagami m fading channels with MRC diversity.” Communications, IEICE Transactions on E92B(2): 559–566

    Article  Google Scholar 

  • Young-Chai, K., M. S. Alouini, et al. (2000). “Analysis and optimization of switched diversity systems.” Vehicular Technology, IEEE Transactions on 49(5): 1813–1831.

    Article  Google Scholar 

  • Zhang, J. and V. Aalo (2001). “Effect of macrodiversity on average-error probabilities in a Rician fading channel with correlated lognormal shadowing.” Communications, IEEE Transactions on 49(1): 14–18.

    Article  MATH  Google Scholar 

  • Zogas, D. A., G. K. Karagiannidis, et al. (2005). “Equal gain combining over Nakagami-n (Rice) and Nakagami-q (Hoyt) generalized fading channels.” Wireless Communications, IEEE Transactions on 4(2): 374–379.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mohana Shankar .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shankar, P.M. (2012). Diversity Techniques. In: Fading and Shadowing in Wireless Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0367-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0367-8_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0366-1

  • Online ISBN: 978-1-4614-0367-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics