Modeling of Fading and Shadowing

Chapter

Abstract

We presented various models to describe the statistical fluctuations in wireless channels. The models ranged from the simple Rayleigh ones, to cascaded ones, and to complex models such as those based on κμ and ημ distributions. The models were compared in terms of their density functions, distribution functions, and quantitative measures such as error rates and outage probabilities. The shadowing was examined using the traditional lognormal model and approaches based on similarities between lognormal pdf and other density functions. We looked at the simultaneous existence of short-term fading and shadowing using the Nakagami-lognormal density function and approximations to it using the GK model and the Nakagami-N-gamma model. To complete the study of these models for fading, shadowing, and shadowed fading channels, we examined some second-order statistical properties for several models.

References

  1. Aalo, V., T. Piboongungon, et al. (2005). “Bit-error rate of binary digital modulation schemes in generalized gamma fading channels.” Communications Letters, IEEE 9(2): 139–141.CrossRefGoogle Scholar
  2. Abdi, A. and M. Kaveh (1998). “K distribution: an appropriate substitute for Rayleigh-lognormal distribution in fading-shadowing wireless channels.” Electronics Letters 34(9): 851–852.CrossRefGoogle Scholar
  3. Abdi, A. and M. Kaveh (2000). “Comparison of DPSK and MSK bit error rates for K and Rayleigh-lognormal fading distributions.” Communications Letters, IEEE 4(4): 122–124.CrossRefGoogle Scholar
  4. Abdi, A. and M. Kaveh (2002). “Level crossing rate in terms of the characteristic function: A new approach for calculating the fading rate in diversity systems.” IEEE Transactions on Communications 50(9): 1397–1400.CrossRefGoogle Scholar
  5. Abdi, A., K. Wills, et al. (2000). Comparison of the level crossing rate and average fade duration of Rayleigh, Rice and Nakagami fading models with mobile channel data. Vehicular Technology Conference, 2000. IEEE VTS-Fall VTC 2000. 52nd. 4: 1850–1857.Google Scholar
  6. Abramowitz, M., Segun, I. A., eds. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover Publications.MATHGoogle Scholar
  7. Abu-Dayya, A. A. and N. C. Beaulieu (1994). “Outage probabilities in the presence of correlated lognormal interferers.” Vehicular Technology, IEEE Transactions on 43(1): 164–173.Google Scholar
  8. Adamchik, V. (1995). “The evaluation of integrals of Bessel functions via G-function identities.” Journal of Computational and Applied Mathematics 64(3): 283–290.MATHMathSciNetCrossRefGoogle Scholar
  9. Alouini, M. S. and M. K. Simon (1998). “Generic form for average error probability of binary signals over fading channels.” Electronics Letters 34(10): 949–950.CrossRefGoogle Scholar
  10. Alouini, M. S. and M. K. Simon (2006). “Performance of generalized selection combining over Weibull fading channels.” Wireless Communications & Mobile Computing 6(8): 1077–1084.CrossRefGoogle Scholar
  11. Andersen, J. B. (2002). Statistical distributions in mobile communications using multiple scattering. presented at the 27th URSI General Assembly, Maastricht, Netherlands.Google Scholar
  12. Annamalai, A. and C. Tellambura (2001). “Error rates for Nakagami-m fading multichannel reception of binary and M-ary signals.” Communications, IEEE Transactions on 49(1): 58–68.MATHCrossRefGoogle Scholar
  13. Annamalai, A., C. Tellambura, et al. (2001). “Simple and accurate methods for outage analysis in cellular mobile radio systems-a unified approach.” Communications, IEEE Transactions on 49(2): 303–316.MATHCrossRefGoogle Scholar
  14. Annamalai, A., C. Tellambura, et al. (2005). “A general method for calculating error probabilities over fading channels.” Communications, IEEE Transactions on 53(5): 841–852.CrossRefGoogle Scholar
  15. Aulin, T. (1979). “A modified model for the fading signal at the mobile radio channel,” Vehicular Technology, IEEE Transactions on 28(3): 182–203.CrossRefGoogle Scholar
  16. Bithas, P., N. Sagias, et al. (2006). “On the performance analysis of digital communications over generalized-K fading channels.” Communications Letters, IEEE 10(5): 353–355.CrossRefGoogle Scholar
  17. Braun, W. R. and Dersch, U. (1991). “A physical mobile radio channel model,” Vehicular Technology, IEEE Transactions on 40(2): 472–482.CrossRefGoogle Scholar
  18. Bullington, K. (1977). “Radio propagation for vehicular communications,” Vehicular Technology, IEEE Transactions on 26(4): 295–308.CrossRefGoogle Scholar
  19. Chen, J. I. Z. (2007). “A unified approach to average LCR and AFD performance of SC diversity in generalized fading environments.” Journal of the Franklin Institute-Engineering and Applied Mathematics 344(6): 889–911.MATHCrossRefGoogle Scholar
  20. Chizhik, D., G. J. Foschini, M. J. Gans, and R. A. Valenzuela, (2002). “Keyholes, correlations, and capacities of multielement transmit and receive antennas,” Wireless Communications, IEEE Transactions on 1(2):361–368.CrossRefGoogle Scholar
  21. Clark, R. H. (1968). “A statistical description of mobile radio reception,” BSTJ 47: 957–1000.Google Scholar
  22. Clark, J. R. and Karp, S. (1965). ‘Approximations for lognormally fading optical signals,’ Proc. IEEE, 1970, 58, pp. 1964–1965.Google Scholar
  23. Cotton, S. L. and W. G. Scanlon (2007). “Higher Order Statistics for Lognormal Small-Scale Fading in Mobile Radio Channels.” Antennas and Wireless Propagation Letters, IEEE 6: 540–543.CrossRefGoogle Scholar
  24. Coulson, A. J. et al. (1998a). “Improved fading distribution for mobile radio,” Communications, IEE Proceedings on 145(3) 197–202.Google Scholar
  25. Coulson, A. J., et al. (1998b). “A Statistical Basis for Lognormal Shadowing Effects in Multipath Fading Channels,” Communications, IEEE Transactions on 46(4): 494–502.Google Scholar
  26. Di Renzo, M. Graziosi, F. Santucci, F. (2010). “Channel Capacity Over Generalized Fading Channels: A Novel MGF-Based Approach for Performance Analysis and Design of Wireless Communication Systems.” Vehicular Technology, IEEE Transactions on 59(1): 127–149.Google Scholar
  27. de Souza, R. and M. D. Yacoub (2009). Bivariate Nakagami-q (Hoyt) Distribution. Communications, 2009. ICC ‘09. IEEE International Conference on. 1–5.Google Scholar
  28. Dong, X. and Beaulieu, N. C. (2001). “Average level crossing rate and average fade duration of selection diversity,” Communications Letters IEEE 5(10): 396–398.CrossRefGoogle Scholar
  29. Filho, J. C. S. and M. D. Yacoub (2005). “Highly accurate κ & μ approximation to sum of M independent non-identical Ricean variates.” Electronics Letters 41(6): 338–339.CrossRefGoogle Scholar
  30. Fraile, R., J. Nasreddine, et al. (2007). “Multiple diffraction shadowing simulation model.” Communications Letters, IEEE 11(4): 319–321.CrossRefGoogle Scholar
  31. Galambos, J. and I. Simonelli (2004). Products of random variables, Marcel Dekker.Google Scholar
  32. Gilbert, E. N. (1965). “Energy reception for mobile radio,” BSTJ 48: 2473–2492.Google Scholar
  33. Goodman, J. W. (1985). Statistical optics. New York. Wiley.Google Scholar
  34. Gradshteyn, I. S., I. M. Ryzhik (2007). Table of integrals, series and products. Oxford, Academic.MATHGoogle Scholar
  35. Hajri, N., et al. (2009). “A Study on the Statistical Properties of Double Hoyt Fading Channels,” Proceedings of the 6th international conference on Symposium on Wireless Communication Systems, Siena, Italy: 201–205.Google Scholar
  36. Hansen, F. and F. I. Meno (1977). “Mobile fading; Rayleigh and lognormal superimposed.” Vehicular Technology, IEEE Transactions on 26(4): 332–335.CrossRefGoogle Scholar
  37. Haykin, S. S. (2001). Digital communications. New York, Wiley.Google Scholar
  38. Jakes, W. C. (1994). Microwave mobile communications. Piscataway, NJ, IEEE Press.Google Scholar
  39. Karagiannidis, G. K., N. C. Sagias, et al. (2007). “N*Nakagami: A novel stochastic model for cascaded fading channels.” Communications, IEEE Transactions on 55(8): 1453–1458.CrossRefGoogle Scholar
  40. Karadimas, P. and S. A. Kotsopoulos (2008). “A Generalized Modified Suzuki Model with Sectored and Inhomogeneous Diffuse Scattering Component.” Wireless Personal Communications 47(4): 449–469.CrossRefGoogle Scholar
  41. Karadimas, P. and S. A. Kotsopoulos (2010). “A Modified Loo Model with Partially Blocked and Three Dimensional Multipath Scattering: Analysis, Simulation and Validation.” Wireless Personal Communications 53(4): 503–528.CrossRefGoogle Scholar
  42. Karagiannidis, G. K., T. A. Tsiftsis and R. K. Mallik (2006). “Bounds of Multihop Relayed Communications in Nakagami-m Fading.” IEEE Transactions on Communications 54: 18–22.Google Scholar
  43. Karmeshu, J. and R. Agrawal (2007). “On efficacy of Rayleigh-inverse Gaussian distribution over K-distribution for wireless fading channels.” Wireless Communications & Mobile Computing 7(1): 1–7.CrossRefGoogle Scholar
  44. Kim, Y. Y. and S. Q. Li (1999). “Capturing important statistics of a fading shadowing channel for network performance analysis.” Selected Areas in Communications, IEEE Journal on 17(5): 888–901.CrossRefGoogle Scholar
  45. Kostic, I. M. (2005). “Analytical approach to performance analysis for channel subject to shadowing and fading.” Communications, IEE Proceedings- 152(6): 821–827.CrossRefGoogle Scholar
  46. Laourine, A., M. S. Alouini, et al. (2008). “On the capacity of generalized-K fading channels.” Wireless Communications, IEEE Transactions on 7(7): 2441–2445.CrossRefGoogle Scholar
  47. Laourine, A., et al. (2009). “On the Performance Analysis of Composite Multipath/Shadowing Channels Using the G-Distribution,” Communications, IEEE Transactions on 57(4): 1162–1170.CrossRefGoogle Scholar
  48. Laourine, A., A. Stephenne, et al. (2007). “Estimating the ergodic capacity of log-normal channels.” Communications Letters, IEEE 11(7): 568–570.CrossRefGoogle Scholar
  49. Lee, W. C. Y. (1990). “Estimate of channel capacity in Rayleigh fading environment,” Vehicular Technology, IEEE Transactions on 39:187–189CrossRefGoogle Scholar
  50. Loo, C. (1985). “A statistical model for a land mobile channel,” Vehicular Technology, IEEE Transactions on 34(3): 122–127CrossRefGoogle Scholar
  51. Malhotra, J., A. K. Sharma, et al. (2009). “On the performance analysis of wireless receiver using generalized-gamma fading model.” Annales Des Telecommunications-Annals of Telecommunications 64(1–2): 147–153.Google Scholar
  52. Mathai, A. M. and H. J. Haubold (2008). Special functions for applied scientists. New York, Springer Science+Business Media.Google Scholar
  53. Mathai, A. M. and R. K. Saxena (1973). Generalized hypergeometric functions with applications in statistics and physical sciences. Berlin, New York, Springer.MATHGoogle Scholar
  54. Mendes, J. R. and M. D. Yacoub (2007). “A General Bivariate Ricean Model and Its Statistics.” Vehicular Technology, IEEE Transactions on 56(2): 404–415.CrossRefGoogle Scholar
  55. Nadarajah, S. and S. Kotz (2006a). “On the bit-error rate for generalized gamma fading channels.” Communications Letters, IEEE 10(9): 644–645.Google Scholar
  56. Nadarajah, S. and S. Kotz (2006b). “On the product and ratio of gamma and Weibull random variables.” Econometric Theory 22(02): 338–344.MATHMathSciNetCrossRefGoogle Scholar
  57. Nakagami, M. (1960). The m-distribution—A general formula of intensity distribution of rapid fading, in Statistical Methods in Radio Wave Propagation, W. C. Hoffman, Ed. Elmsford, NY: Pergamon.Google Scholar
  58. Ohta, M. and Koizumi, T. (1969). ‘Intensity fluctuation of stationary random noise containing an arbitrary signal wave,’ IEEE Proceedings, 1969, 57, pp. 1231–1232.Google Scholar
  59. Pahlavan, K. and A. Levesque (1995). Wireless Information Networks. John Wiley and Sons.Google Scholar
  60. Pahlavan, K. and Levesque, A. H. (2005). Wireless Information Networks. Hoboken, NJ, John Wiley.CrossRefGoogle Scholar
  61. Papazafeiropoulos, A. K. and S. A. Kotsopoulos (2011). “The α-λ-μ and α-k-μ small scale general fading distributions: A unified approach.” Wireless Personal Communications 57: 735–751.Google Scholar
  62. Papoulis, A. and S. U. Pillai (2002). Probability, random variables, and stochastic processes. Boston, McGraw-Hill.Google Scholar
  63. Paris, J. F. (2009). “Nakagami-q (Hoyt) distribution function with applications,” Electron. Lett. 45(4): 210–211.MathSciNetCrossRefGoogle Scholar
  64. Paris, J. F. (2009). Nakagami-q (Hoyt) distribution function with applications (Erratum), Electron. Lett. 45(8): 210–211.MathSciNetCrossRefGoogle Scholar
  65. Patzold, M. (2002). Mobile Fading Channels. Chichester, U. K., John Wiley & Sons, Inc.Google Scholar
  66. Patzold, M., U. Killat, et al. (1998). “An extended Suzuki model for land mobile satellite channels and its statistical properties.” Vehicular Technology, IEEE Transactions on 47(2): 617–630.CrossRefGoogle Scholar
  67. Podolski, H. (1972). “The distribution of a product of n independent random variables with generalized gamma distribution.” Demonstratio Math 4(2): 119–123.MATHMathSciNetGoogle Scholar
  68. Prabhu, G. and Shankar, P. M. (2002). “Simulation Of Flat Fading Using MATLAB For Classroom Instruction,” Education, IEEE Transactions on 45(1): 19–25.CrossRefGoogle Scholar
  69. Proakis, J. G. (2001). Digital communications. Boston, McGraw-Hill.Google Scholar
  70. Rappaport, T. S. (2002). Wireless Communications: principles and practice. Upper Saddle River, N.J., Prentice Hall PTR.Google Scholar
  71. Rohatgi, V. K. and A. K. M. E. Saleh (2001). An introduction to probability and statistics. New York, Wiley.MATHGoogle Scholar
  72. Sagias, N. C., et al. (2004). “Channel Capacity and Second-Order Statistics in Weibull Fading,” Communications Letters, IEEE 8(6): 377–379.CrossRefGoogle Scholar
  73. Sagias, N. C. et al. (2005). “New Results for the Shannon Channel Capacity in generalized fading channels,” Communications Letters, IEEE 9(2): 97–99.CrossRefGoogle Scholar
  74. Sagias, N. C. and G. S. Tombras (2007). “On the cascaded Weibull fading channel model.” Journal of the Franklin Institute 344(1): 1–11.MATHMathSciNetCrossRefGoogle Scholar
  75. Salo, J., H. M. El-Sallabi, et al. (2006a). “The distribution of the product of independent Rayleigh random variables.” Antennas and Propagation, IEEE Transactions on 54(2): 639–643.MathSciNetCrossRefGoogle Scholar
  76. Salo, J., H. M. El-Sallabi, et al. (2006b). “Statistical analysis of the multiple scattering radio channel.” Antennas and Propagation, IEEE Transactions on 54(11): 3114–3124.Google Scholar
  77. Shankar, P. (2002a). Introduction to wireless systems, Wiley New York.Google Scholar
  78. Shankar, P. (2002b). “Ultrasonic tissue characterization using a generalized Nakagami model.” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 48(6): 1716–1720.CrossRefGoogle Scholar
  79. Shankar, P. M. (2004). “Error rates in generalized shadowed fading channels.” Wireless Personal Communications 28(3): 233–238.CrossRefGoogle Scholar
  80. Shankar, P. M. (2005). “Outage probabilities in shadowed fading channels using a compound statistical model.” Communications, IEE Proceedings on 152(6): 828–832.CrossRefGoogle Scholar
  81. Shankar, P. M. and C. Gentile (2010). Statistical Analysis of Short Term Fading and Shadowing in Ultra-Wideband Systems. Communications (ICC), 2010. IEEE International Conference on. 1–6.Google Scholar
  82. Shankar, P. M. (2010a). “Statistical Models for Fading and Shadowed Fading Channels in Wireless Systems: A Pedagogical Perspective,” Wireless Personal Communications. DOI: 10.1007/s11277-010-9938-2.Google Scholar
  83. Shankar, P. M. (2010b). “A Nakagami-N-gamma Model for Shadowed Fading Channels,” WIRE DOI: 10.1007/s11277-010-0211-5.Google Scholar
  84. Shankar, P. M. (2011). “Maximal ratio combining in independent identically distributed N∗Nakagami fading channels,” Communications, IET Proceedings on 5(3): 320–326.CrossRefGoogle Scholar
  85. Shankar, P. M. (2011). “Performance of N*Nakagami cascaded fading channels in dual selection combining diversity,” IWCMC 2011, July 2011.Google Scholar
  86. Shepherd, N. H. (1977). “Radio wave loss deviation and shadow loss at 900 MHZ,” Vehicular Technology, IEEE Transactions on 26(4) 309–313.CrossRefGoogle Scholar
  87. Shin, H. and J. H. Lee (2004). “Performance analysis of space-time block codes over keyhole Nakagami-m fading channels,” Vehicular Technology, IEEE Transactions on 53(2): 351–362.CrossRefGoogle Scholar
  88. Simon, M. K. and M.-S. Alouini (2005). Digital communication over fading channels. Hoboken, N.J., Wiley-Interscience.Google Scholar
  89. Sklar, B. (2001). Digital communications: fundamentals and applications. Upper Saddle River, N.J., Prentice-Hall PTR.Google Scholar
  90. Springer, M. and W. Thompson (1966). “The distribution of products of independent random variables.” SIAM Journal on Applied Mathematics 14(3): 511–526.MATHMathSciNetCrossRefGoogle Scholar
  91. Springer, M. and W. Thompson (1970). “The distribution of products of beta, gamma and Gaussian random variables.” SIAM Journal on Applied Mathematics 18(4): 721–737.MATHMathSciNetCrossRefGoogle Scholar
  92. Steele, R. and L. Hanzó (1999). Mobile radio communications: second and third generation cellular and WATM systems. Chichester, England; New York, John Wiley & Sons, Inc.Google Scholar
  93. Stein, S. (1987). “Fading channel issues in system engineering.” Selected Areas in Communications, IEEE Journal on 5(2): 68–89.CrossRefGoogle Scholar
  94. Stuber, G. L. (2002). Principles of mobile communication. New York, Kluwer Academic.Google Scholar
  95. Suzuki, H. (1977). “A statistical model for urban radio propagation”, Communications, IEEE Transactions on 25:673–680.CrossRefGoogle Scholar
  96. Talha, B. and Patzold, M. (2007). “On the statistical properties of double Rice channels,” Proc. 10th International Symposium on Wireless Personal Multimedia Communications, WPMC 2007, Jaipur, India, pp. 517–522.Google Scholar
  97. Tellambura, C. and A. Annamalai (1999). “An unified numerical approach for computing the outage probability for mobile radio systems.” Communications Letters, IEEE 3(4): 97–99.CrossRefGoogle Scholar
  98. Tjhung, T. T. and C. C. Chai (1999). “Fade statistics in Nakagami-lognormal channels.” Communications, IEEE Transactions on 47(12): 1769–1772.CrossRefGoogle Scholar
  99. Trigui, I., A. Laourine, et al. (2009). On the Performance of Cascaded Generalized K Fading Channels. Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE. 1–5.Google Scholar
  100. Uysal, M. (2005). “Maximum achievable diversity order for cascaded Rayleigh fading channels.” Electronics Letters 41(23): 1289–1290.CrossRefGoogle Scholar
  101. Vaughn, R. A., and J. B. Andersen (2003). Channels, propagation and Antennas for Mobile Communications. Herts, U. K., IEE.CrossRefGoogle Scholar
  102. Wongtrairat, W. et al. (2008). “Performance of M-PSK Modulation in Double Rician Fading Channels with MRC Diversity,” 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2008. ECTI-CON 2008, Volume: 1: 321–324.Google Scholar
  103. Wongtrairat, W. and P. Supnithi (2009). “Performance of Digital Modulation in Double Nakagami-m Fading Channels with MRC Diversity.” Communications, IEICE Transactions on E92b(2): 559–566.Google Scholar
  104. Yacoub, M. D. (2000). “Fading distributions and co-channel interference in wireless systems.” Antennas and Propagation, IEEE Magazine 42(1): 150–159.CrossRefGoogle Scholar
  105. Yacoub, M. D. (2007a). “The alpha-mu distribution: A physical fading model for the Stacy distribution.” Vehicular Technology, IEEE Transactions on 56(1): 27–34.CrossRefGoogle Scholar
  106. Yacoub, M. D. (2007b). “The kappa-mu distribution and the eta-mu distribution” Antennas and Propagation, IEEE Magazine 49(1): 68–81.Google Scholar
  107. Yacoub, M. D. et al. (1999). “On higher order statistics of the Nakagami-m distribution.” Vehicular Technology, IEEE Transactions on 48(3): 790–794.CrossRefGoogle Scholar
  108. Yacoub, M. D. et al. (2001). “Level crossing rate and average fade duration for pure selection and threshold selection diversity-combining systems.” International Journal of Communication Systems 14(10): 897–907.MATHCrossRefGoogle Scholar
  109. Yacoub, M. D., J. E. Vargas B, et al. (1998). On the statistics of the Nakagami-m signal. Telecommunications Symposium, 1998. ITS ‘98 Proceedings. SBT/IEEE International. 2: 377–382.Google Scholar
  110. Yilmaz, F. and M. S. Alouini (2009). Product of the Powers of Generalized Nakagami-m Variates and Performance of Cascaded Fading Channels. Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE. 1–5.Google Scholar
  111. Yuan, L., Z. Jian, et al. (2008). Simulation of Doubly-Selective Compound K Fading Channels for Mobile-to-Mobile Communications. Wireless Communications and Networking Conference, 2008. WCNC 2008. IEEE. 1–5.Google Scholar
  112. Zlatanov, N. et al. (2008). “Level crossing rate and average fade duration of the double Nakakagmi-m random process and its applications to MIMO keyhole fading channels.” Communications Letters, IEEE 12(11): 1–3.Google Scholar
  113. Zogas, D. and Karagiannidis, G. K. (2005). “Infinite-Series Representations Associated With the Bivariate Rician Distribution and Their Applications,” Communications, IEEE Transactions on 53(11): 1790–1794.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Electrical and Computer EngineeringDrexel UniversityPhiladelphiaUSA

Personalised recommendations