Fading and Shadowing in Wireless Systems pp 109-191 | Cite as

# Modems for Wireless Communications

## Abstract

Digital modulation and demodulation techniques together (modem) form the fundamental building block of data transmission in communication systems in general and wireless communication systems in particular (Lucky et al. 1968; Oetting 1979; Amoroso 1980; Feher 1995; Benedetto and Biglieri 1999; Proakis 2001; Simon and Alouini 2005; Schwartz 2005; Couch 2007). The modems can be classified in a multitude of ways (Simon et al. 1995; Sklar 1993, 2001; Haykin 2001). They can be identified in terms of the signal property that is modulated such as amplitude, phase, or frequency. They can also be classified in terms of the number of levels of values (binary, quaternary, or in general M-ary) attributable to the property. Detection methods such as coherent or noncoherent ones can also be used for the classification. We can, in addition, use terms such as “linear” and “nonlinear” modulation to classify the modulation types (Sundberg 1986; Anderson et al. 1986; Gagliardi 1988; Gallager 2008). The output of the frequency modulated system has a constant envelope while the output of the amplitude or phase modulated system has a constant frequency with time varying amplitudes. This makes the amplitude and phase modulation a form of “linear” modulation and the frequency modulation a form of “nonlinear” modulation. Even for a specific modulation type such as phase modulation (phase shift keying for example), it is possible to have a coherent or a noncoherent detector or receiver. Modems cover a wide range of possibilities with some common themes such as the initial building blocks of the “signal space.” The concepts of signal space makes it possible to analyze modems, design them so that they meet certain criteria, provide a uniform framework, and make it possible to compare and contrast the different modems.

### Keywords

Sine Aulin### References

- Abramowitz, M. and Segun, I. (1965).
*Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables*. New York, N. Y., Dover Publications.Google Scholar - Aghvami, A. (1993). “Digital modulation techniques for mobile and personal communication systems.”
*Electronics & Communication Engineering Journal***5**(3): 125–132.CrossRefGoogle Scholar - Akaiwa, Y. (1997).
*Introduction to digital mobile communication*. New York, Wiley.Google Scholar - Akaiwa, Y. and Y. Nagata (1987). “Highly efficient digital mobile communications with a linear modulation method.”
*Selected Areas in Communications, IEEE Journal on***5**(5): 890–895.CrossRefGoogle Scholar - Amoroso, F. (1976). “Pulse and Spectrum Manipulation in the Minimum (Frequency) Shift Keying (MSK) Format.”
*Communications, IEEE Transactions on***24**(3): 381–384.CrossRefGoogle Scholar - Amoroso, F. (1980). “Bandwidth of Digital Data Signals.”
*Communications Magazine, IEEE***18**(6): 13–24.CrossRefGoogle Scholar - Amoroso, F. (1979). “The use of quasi-bandlimited pulses in MSK transmission.”
*Communications, IEEE Transactions on***27**(10): 1616–1624.CrossRefGoogle Scholar - Amoroso, F. and J. Kivett (1977). “Simplified MSK signaling technique.”
*Communications, IEEE Transactions on***25**(4): 433–441.CrossRefGoogle Scholar - Anderson, J., T. Aulin, et al. (1986).
*Digital phase modulation*, Plenum Publishing Corporation.Google Scholar - Anderson, J. B. (2005).
*Digital transmission engineering*. Hoboken, NJ, IEEE Press.CrossRefGoogle Scholar - Armada, A. G. (2001). “Understanding the Effects of Phase Noise in Orthogonal Frequency Division Multiplexing (OFDM).”
*Transactions of IEEE on Broadcasting***47**(2): 153–159.Google Scholar - Aulin, T. and C. Sundberg (1981). “Continuous Phase Modulation--Part I: Full Response Signaling.”
*Communications, IEEE Transactions on***29**(3): 196–209.CrossRefMATHMathSciNetGoogle Scholar - Aulin, T. and C. E. Sundberg (1982). “Exact Asymptotic Behavior of Digital FM Spectra.”
*Communications, IEEE Transactions on***30**(11): 2438–2449.CrossRefMATHGoogle Scholar - Beaulieu, N. C. and M. O. Damen (2004). “Parametric construction of Nyquist-I pulses.”
*Communications, IEEE Transactions on***52**(12): 2134–2142.CrossRefGoogle Scholar - Benedetto, S. and E. Biglieri (1999).
*Principles of digital transmission: with wireless applications*. New York, Kluwer Academic/Plenum Press.MATHGoogle Scholar - Bingham, J. A. C. (2000).
*ADSL, VDSL, and Multicarrier Modulation*. Wiley Interscience.Google Scholar - Bingham, J. (1990). “Multicarrier modulation for data transmission: An idea whose time has come.”
*Communications Magazine, IEEE***28**(5): 5–14.CrossRefMathSciNetGoogle Scholar - Borjesson, P. and C. E. Sundberg (1979). “Simple Approximations of the Error Function Q(x) for Communications Applications.”
*Communications, IEEE Transactions on***27**(3): 639–643.CrossRefGoogle Scholar - Cahn, C. (1960). “Combined digital phase and amplitude modulation communication systems.”
*Communications Systems, IRE Transactions on***8**(3): 150–155.CrossRefGoogle Scholar - Cahn, C. (1959). “Performance of digital phase-modulation communication systems.”
*Communications Systems, IRE Transactions on***7**(1): 3–6.CrossRefGoogle Scholar - Campopiano, C. and B. Glazer (1962). “A coherent digital amplitude and phase modulation scheme.”
*Communications Systems, IRE Transactions on***10**(1): 90–95.CrossRefGoogle Scholar - Chiani, M. et al. (2003), “New exponential bounds and approximations to the computation of error probability in fading channels,”
*Wireless Communications IEEE Trans. on***2**(4): 840–845.CrossRefGoogle Scholar - Cimini Jr, L. (1985). “Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing.”
*Communications, IEEE Transactions on***33**(7): 665–675.CrossRefGoogle Scholar - Cooper, G. R. and C. D. McGillem (1986).
*Modern Communications and Spread Spectrum*. New York, N. Y., McGraw-Hill.Google Scholar - Corazza, G. E. and G. Ferrari (2002). “New bounds for the Marcum Q-function.”
*Information Theory, IEEE Transactions on***48**(11): 3003–3008.CrossRefMATHMathSciNetGoogle Scholar - Couch, L. W. (2007).
*Digital and analog communication systems*. Upper Saddle River, N.J., Pearson/Prentice Hall.Google Scholar - Davenport, W. and Root, W. (1958).
*Random Signals and Noise*. New York: McGraw-Hill.MATHGoogle Scholar - Edbauer, F. (1992). “Bit error rate of binary and quaternary DPSK signals with multiple differential feedback detection.”
*Communications, IEEE Transactions on***40**(3): 457–460.CrossRefMATHGoogle Scholar - Elnoubi, S. (2006). Analysis of GMSK with discriminator detection in mobile radio channels,
*Vehicular Technology, IEEE Transactions on***35**(2): 71–76.CrossRefGoogle Scholar - Feher, K. (1991). “MODEMs for emerging digital cellular-mobile radio system.”
*Vehicular Technology, IEEE Transactions on***40**(2): 355–365.CrossRefGoogle Scholar - Feher, K. (1995).
*Wireless Digital Communications: Modulation & Spread Spectrum Applications*. Upper Saddle River, N. J. Prentice-Hall.Google Scholar - Forney Jr, G., R. Gallager, et al. (1984). “Efficient modulation for band-limited channels.”
*Selected Areas in Communications, IEEE Journal on***2**(5): 632–647.CrossRefGoogle Scholar - Franks, L. (1968). “Further Results on Nyquist’s Problem in Pulse Transmission.”
*Communication Technology, IEEE Transactions on***16**(2): 337–340.CrossRefGoogle Scholar - Gagliardi, R. M. (1988).
*Introduction to Communications Engineering*. New York, N. Y., John Wiley & Sons.Google Scholar - Gallager, R. G. (2008).
*Principles of digital communication*. Cambridge; New York, Cambridge University Press.MATHGoogle Scholar - Gao, X. Q., X. H. You, et al. (2006). “An efficient digital implementation of multicarrier CDMA system based on generalized DFT filter banks.”
*Selected Areas in Communications, IEEE Journal on***24**(6): 1189–1198.CrossRefGoogle Scholar - Goldsmith, A. (2005).
*Wireless communications*. New York, Cambridge University Press.Google Scholar - Gradshteyn, I. S., I. M. Ryzhik (2007).
*Table of integrals, series and products*. Oxford, Academic.MATHGoogle Scholar - Gronemeyer, S. and A. McBride (1976). “MSK and offset QPSK modulation.”
*Communications, IEEE Transactions on***24**(8): 809–820.CrossRefGoogle Scholar - Hambley, A. and O. Tanaka (1984). “Generalized serial MSK modulation.”
*Communications, IEEE Transactions on***32**(3): 305–308.CrossRefGoogle Scholar - Haykin, S. M., M. Moher (2005).
*Modern Wireless Communications*. Upper Saddle River, N. J., Prentice-Hall.Google Scholar - Haykin, S. M. (2001).
*Digital communications*. New York, Wiley.Google Scholar - Helstrom, C. (1960). “The comparison of digital communication systems.”
*Communications Systems, IRE Transactions on***8**(3): 141–150.CrossRefGoogle Scholar - Helstrom, C. W. (1968).
*Statistical theory of signal detection*. Oxford, New York, Pergamon Press.Google Scholar - Helstrom, C. W. (1998). “Approximate inversion of Marcum’s Q-function.”
*Aerospace and Electronic Systems, IEEE Transactions on***34**(1): 317–319.Google Scholar - Isukapalli, Y. and B. Rao (2008). “An Analytically Tractable Approximation for the Gaussian Q-Function.”
*Communications Letters, IEEE***12**(9): 669–671.CrossRefGoogle Scholar - Karagiannidis, G. K. and A. S. Lioumpas (2007). “An Improved Approximation for the Gaussian Q-Function.”
*Communications Letters, IEEE***11**(8): 644–646.CrossRefGoogle Scholar - Kim, K. and Polydoros (1988). A. “Digital Modulation Classification: The BPSK versus the QPSK Case,” Proceedings of MILCOM ‘88, pp. 24.4.1–24.4.6, San Diego, California, October 26–29, 1988.Google Scholar
- Kisel, A. V. (1999). “An extension of pulse shaping filter theory.”
*Communications, IEEE Transactions on***47**(5): 645–647.CrossRefGoogle Scholar - Klymyshyn, D., S. Kumar, et al. (1999). “Direct GMSK modulation with a phase-locked power oscillator.”
*Vehicular Technology, IEEE Transactions on***48**(5): 1616–1625.CrossRefGoogle Scholar - Kuchi, K. and V. Prabhu (1999).
*Power spectral density of GMSK modulation using matrix methods*, Military Communications Conference Proceedings, 1999. MILCOM 1999. IEEE, Volume: 1, 1999, Page(s): 45–50 vol.1Google Scholar - Lindsey, W. C. & M. K. Simon (1973).
*Telecommunication Systems Engineering*. Englewood Cliffs, N.J., Prentice-Hall.Google Scholar - Liu, H. and U. Tureli (1998). “A high-efficiency carrier estimator for OFDM communications.”
*Communications Letters, IEEE***2**(4): 104–106.CrossRefGoogle Scholar - Linz, A. and A. Hendrickson (1996). “Efficient implementation of an IQ GMSK modulator.”
*Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on***43**(1): 14–23.CrossRefGoogle Scholar - R. W. Lucky, J. Salz, and E. J. Weldon, Jr. (1968).
*Principles of Data Communication*. New York, NY: McGraw-Hill.Google Scholar - Makrakis, D. and K. Feher (1990). “Optimal noncoherent detection of PSK signals.”
*Electronics Letters***26**(6): 398–400.CrossRefGoogle Scholar - Miller, L. E. and J. S. Lee (1998). “BER expressions for differentially detected pi/4 DQPSK modulation.”
*Communications, IEEE Transactions on***46**(1): 71–81.CrossRefGoogle Scholar - Miyagaki, Y., N. Morinaga, et al. (1978). “Error probability characteristics for CPSK signal through m-distributed fading channel.”
*Communications, IEEE Transactions on***26**(1): 88–100.CrossRefMATHGoogle Scholar - Molisch, A. F. (2005).
*Wireless communications*. Chichester, England; Hoboken, NJ, John Wiley & Sons.Google Scholar - Murota, K. (2006). “Spectrum efficiency of GMSK land mobile radio.”
*Vehicular Technology, IEEE Transactions on***34**(2): 69–75.CrossRefGoogle Scholar - Murota, K., and Hirade, K. (1981). “GMSK modulation for digital mobile radio telephony.”
*IEEE Trans. Comm.***COM-29**: 1044–1050.Google Scholar - Noguchi, T., Y. Daido, et al. (1986). “Modulation techniques for microwave digital radio.”
*IEEE Communications Magazine***24**: 21–30.CrossRefGoogle Scholar - Nuttall, A. (1975). “Some integrals involving the “Q_M”> function (Corresp.).”
*Information Theory, IEEE Transactions on***21**(1): 95–96.Google Scholar - Nuttall, A. and F. Amoroso (1965). “Minimum Gabor bandwidth of M-ary orthogonal signals.”
*Information Theory, IEEE Transactions on***11**(3): 440–444.CrossRefMATHGoogle Scholar - Nyquist, H. (2002). “Certain topics in telegraph transmission theory.”
*Proceedings of the IEEE***90**(2): 280–305.CrossRefGoogle Scholar - Oetting, J. (1979). “A comparison of modulation techniques for digital radio.”
*Communications, IEEE Transactions on***27**(12): 1752–1762.CrossRefMATHGoogle Scholar - Olivier, J. C., L. Sang-Yick, et al. (2003). “Efficient equalization and symbol detection for 8-PSK EDGE cellular system.”
*Vehicular Technology, IEEE Transactions on***52**(3): 525–529.CrossRefGoogle Scholar - Papoulis, A. and S. U. Pillai (2002).
*Probability, random variables, and stochastic processes*. Boston, McGraw-Hill.Google Scholar - Pasupathy, S. (1979). “Minimum shift keying: A spectrally efficient modulation.”
*Communications Magazine, IEEE***17**(4): 14–22.CrossRefGoogle Scholar - Prabhu, V. (1980). “The detection efficiency of 16-ary QAM’.”
*Bell Syst. Tech. J***59**(1): 639–656.MATHGoogle Scholar - Prabhu, V. (1969). “Error-Rate Considerations for Digital Phase-Modulation Systems.”
*Communication Technology, IEEE Transactions on***17**(1): 33–42.CrossRefGoogle Scholar - Prabhu, V. (1973). “Error Probability Performance of M-ary CPSK Systems With Intersymbol Interference.”
*Communications, IEEE Transactions on***21**(2): 97–109.CrossRefGoogle Scholar - Prabhu, V. (1976a). “Bandwidth Occupancy in PSK Systems.”
*Communications, IEEE Transactions on***24**(4): 456–462.CrossRefMATHMathSciNetGoogle Scholar - Prabhu, V. K. (1976b). “PSK Performance with Imperfect Carrier Phase Recovery.”
*Aerospace and Electronic Systems, IEEE Transactions on***AES-12**(2): 275–286.Google Scholar - Prabhu, V. K. (1981). “MSK and Offset QPSK Modulation with Bandlimiting Filters.”
*Aerospace and Electronic Systems, IEEE Transactions on***AES-17**(1): 2–8.Google Scholar - Prabhu, V. and J. Salz (1981). “On the performance of phase-shift-keying systems.”
*AT T Technical Journal***60**: 2307–2343.MATHGoogle Scholar - Prasad, R. (2004).
*OFDM for wireless communications systems*. Boston, Artech House.Google Scholar - Proakis, J. G. (2001).
*Digital communications*. Boston, McGraw-Hill.Google Scholar - Rappaport, T. S. (2002).
*Wireless communications: principles and practice*. Upper Saddle River, N.J., Prentice Hall PTR.Google Scholar - Rowe, H. and V. Prabhu (1975). “Power spectrum of a digital, frequency-modulation signal.”
*AT T Technical Journal***54**: 1095–1125.MATHMathSciNetGoogle Scholar - Russell, M. and G. L. Stuber (1995).
*Interchannel interference analysis of OFDM in a mobile environment*,*EEE Vehicular Technology Conference*, pp. 820–824.Google Scholar - Sadr, R. and J. K. Omura (1988). “Generalized minimum shift-keying modulation techniques.”
*Communications, IEEE Transactions on***36**(1): 32–40.CrossRefGoogle Scholar - Salz, J. (1970). “Communications Efficiency of Certain Digital Modulation Systems.”
*Communication Technology, IEEE Transactions on***18**(2): 97–102.CrossRefGoogle Scholar - Sampei, S. (1997).
*Applications of Digital Wireless Technologies to Global Wireless Telecommunications*. Upper Saddle River, N. J., Prentice-Hall.Google Scholar - Sari, H., G. Karam, et al. (1994). An analysis of orthogonal frequency-division multiplexing for mobile radio applications, Vehicular Technology Conference, 1994 IEEE 44
^{th}, 1653–1639.Google Scholar - Sathananthan, K. and C. Tellambura (2001). “Probability of error calculation of OFDM systems with frequency offset.”
*Communications, IEEE Transactions on***49**(11): 1884–1888.CrossRefMATHGoogle Scholar - Sayar, B. and S. Pasupathy (1986). “Further results on Nyquist’s third criterion.”
*Proceedings of the IEEE***74**(10): 1460–1462.CrossRefGoogle Scholar - Schwartz, M. (1980).
*Information transmission, modulation, and noise: a unified approach to communication systems*. New York, McGraw-Hill.Google Scholar - Schwartz, M. et al. (1996).
*Communication Systems and Techniques*. Piscataway, NJ., IEEE Press.Google Scholar - Schwartz, M. (2005).
*Mobile wireless communications*. Cambridge, UK; New York, Cambridge University Press.Google Scholar - Shankar, P. (2002).
*Introduction to wireless systems*, Wiley New York.Google Scholar - Shanmugam, K. S. (1979).
*Digital and analog communication systems*. New York, Wiley.Google Scholar - Simon, M. (1998). “A new twist on the Marcum Q-function and its application.”
*Communications Letters, IEEE***2**(2): 39–41.CrossRefGoogle Scholar - Simon, M. (1976). “A generalization of minimum-shift-keying (MSK)-type signaling based upon input data symbol pulse shaping.”
*Communications, IEEE Transactions on***24**(8): 845–856.CrossRefMATHGoogle Scholar - Simon, M., S. Hinedi, et al. (1995).
*Digital communication techniques: signal design and detection*, Prentice Hall PTR.Google Scholar - Simon, M. K. (2002). “The Nuttall Q function - its relation to the Marcum Q function and its application in digital communication performance evaluation.”
*Communications, IEEE Transactions on***50**(11): 1712–1715.CrossRefGoogle Scholar - Simon, M. K. and M.-S. Alouini (2005).
*Digital communication over fading channels*. Hoboken, N.J., Wiley-Interscience.Google Scholar - Simon, M. K. and M. S. Alouini (2003). “Some new results for integrals involving the generalized Marcum Q function and their application to performance evaluation over fading channels.”
*Wireless Communications, IEEE Transactions on***2**(4): 611–615.CrossRefGoogle Scholar - Simon, M. K. and D. Divsalar (1997). “On the optimality of classical coherent receivers of differentially encoded M-PSK.”
*Communications Letters, IEEE***1**(3): 67–70.CrossRefGoogle Scholar - Sklar, B. (2001).
*Digital communications: fundamentals and applications*. Upper Saddle River, N.J., Prentice-Hall PTR.Google Scholar - Sklar, B. (1983a). “A structured overview of digital communications-A tutorial review-part I.”
*Communications Magazine, IEEE***21**(5): 4–17.CrossRefGoogle Scholar - Sklar, B. (1983b). “A structured overview of digital communications--A tutorial review--Part II.”
*Communications Magazine, IEEE***21**(7): 6–21.CrossRefGoogle Scholar - Sklar, B. (1993). “Defining, designing, and evaluating digital communication systems.”
*Communications Magazine, IEEE***31**(11): 91–101.CrossRefMathSciNetGoogle Scholar - Stuber, G. L. (2002).
*Principles of mobile communication*. New York, Kluwer Academic.Google Scholar - Sundberg, C. E. (1986). “Continuous phase modulation.”
*Communications Magazine, IEEE***24**(4): 25–38.CrossRefMathSciNetGoogle Scholar - Svensson, A. and C. Sundberg (1985). “Serial MSK-type detection of partial response continuous phase modulation.”
*Communications, IEEE Transactions on***33**(1): 44–52.CrossRefGoogle Scholar - Taub, H. and D. L. Schilling (1986).
*Principles of communication systems*. New York, McGraw-Hill.Google Scholar - Thomas, C., M. Weidner, et al. (1974). “Digital amplitude-phase keying with M-ary alphabets.”
*Communications, IEEE Transactions on***22**(2): 168–180.CrossRefGoogle Scholar - Van Trees, H. L. (1968).
*Detection, Estimation and Modulation Theory*New York, N. Y., John Wiley & Sons.Google Scholar - Webb, W. (1992). “QAM: the modulation scheme for future mobile radio communications?”
*Electronics & Communication Engineering Journal***4**(4): 167–176.CrossRefGoogle Scholar - Winters, J. H. (2000). Smart antennas for the EDGE wireless TDMA system. Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000. AS-SPCC. The IEEE 2000.Google Scholar
- Wojnar, A. H. (1986). “Unknown bounds on performance in Nakagami channels,”
*Communications, IEEE Transactions on***34**(1): 22–24.CrossRefGoogle Scholar - Wu, Y. and W. Y. Zou (1995). “Orthogonal frequency division multiplexing: a multi-carrier modulation scheme.”
*Consumer Electronics, IEEE Transactions on***41**(3): 392–399.CrossRefGoogle Scholar - Yunfei, C. and N. C. Beaulieu (2007). “Solutions to Infinite Integrals of Gaussian Q-Function Products and Some Applications.”
*Communications Letters, IEEE***11**(11): 853–855.CrossRefGoogle Scholar - Ziemer, R. and C. Ryan (1983). “Minimum-shift keyed modem implementations for high data rates.”
*Communications Magazine, IEEE***21**(7): 28–37.CrossRefGoogle Scholar