Modems for Wireless Communications

  • P. Mohana ShankarEmail author


Digital modulation and demodulation techniques together (modem) form the fundamental building block of data transmission in communication systems in general and wireless communication systems in particular (Lucky et al. 1968; Oetting 1979; Amoroso 1980; Feher 1995; Benedetto and Biglieri 1999; Proakis 2001; Simon and Alouini 2005; Schwartz 2005; Couch 2007). The modems can be classified in a multitude of ways (Simon et al. 1995; Sklar 1993, 2001; Haykin 2001). They can be identified in terms of the signal property that is modulated such as amplitude, phase, or frequency. They can also be classified in terms of the number of levels of values (binary, quaternary, or in general M-ary) attributable to the property. Detection methods such as coherent or noncoherent ones can also be used for the classification. We can, in addition, use terms such as “linear” and “nonlinear” modulation to classify the modulation types (Sundberg 1986; Anderson et al. 1986; Gagliardi 1988; Gallager 2008). The output of the frequency modulated system has a constant envelope while the output of the amplitude or phase modulated system has a constant frequency with time varying amplitudes. This makes the amplitude and phase modulation a form of “linear” modulation and the frequency modulation a form of “nonlinear” modulation. Even for a specific modulation type such as phase modulation (phase shift keying for example), it is possible to have a coherent or a noncoherent detector or receiver. Modems cover a wide range of possibilities with some common themes such as the initial building blocks of the “signal space.” The concepts of signal space makes it possible to analyze modems, design them so that they meet certain criteria, provide a uniform framework, and make it possible to compare and contrast the different modems.


Orthogonal Frequency Division Multiplex Pulse Shape Modulation Scheme Spectral Efficiency Orthogonal Frequency Division Multiplex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abramowitz, M. and Segun, I. (1965). Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. New York, N. Y., Dover Publications.Google Scholar
  2. Aghvami, A. (1993). “Digital modulation techniques for mobile and personal communication systems.” Electronics & Communication Engineering Journal 5(3): 125–132.CrossRefGoogle Scholar
  3. Akaiwa, Y. (1997). Introduction to digital mobile communication. New York, Wiley.Google Scholar
  4. Akaiwa, Y. and Y. Nagata (1987). “Highly efficient digital mobile communications with a linear modulation method.” Selected Areas in Communications, IEEE Journal on 5(5): 890–895.CrossRefGoogle Scholar
  5. Amoroso, F. (1976). “Pulse and Spectrum Manipulation in the Minimum (Frequency) Shift Keying (MSK) Format.” Communications, IEEE Transactions on 24(3): 381–384.CrossRefGoogle Scholar
  6. Amoroso, F. (1980). “Bandwidth of Digital Data Signals.” Communications Magazine, IEEE 18(6): 13–24.CrossRefGoogle Scholar
  7. Amoroso, F. (1979). “The use of quasi-bandlimited pulses in MSK transmission.” Communications, IEEE Transactions on 27(10): 1616–1624.CrossRefGoogle Scholar
  8. Amoroso, F. and J. Kivett (1977). “Simplified MSK signaling technique.” Communications, IEEE Transactions on 25(4): 433–441.CrossRefGoogle Scholar
  9. Anderson, J., T. Aulin, et al. (1986). Digital phase modulation, Plenum Publishing Corporation.Google Scholar
  10. Anderson, J. B. (2005). Digital transmission engineering. Hoboken, NJ, IEEE Press.CrossRefGoogle Scholar
  11. Armada, A. G. (2001). “Understanding the Effects of Phase Noise in Orthogonal Frequency Division Multiplexing (OFDM).” Transactions of IEEE on Broadcasting 47(2): 153–159.Google Scholar
  12. Aulin, T. and C. Sundberg (1981). “Continuous Phase Modulation--Part I: Full Response Signaling.” Communications, IEEE Transactions on 29(3): 196–209.CrossRefzbMATHMathSciNetGoogle Scholar
  13. Aulin, T. and C. E. Sundberg (1982). “Exact Asymptotic Behavior of Digital FM Spectra.” Communications, IEEE Transactions on 30(11): 2438–2449.CrossRefzbMATHGoogle Scholar
  14. Beaulieu, N. C. and M. O. Damen (2004). “Parametric construction of Nyquist-I pulses.” Communications, IEEE Transactions on 52(12): 2134–2142.CrossRefGoogle Scholar
  15. Benedetto, S. and E. Biglieri (1999). Principles of digital transmission: with wireless applications. New York, Kluwer Academic/Plenum Press.zbMATHGoogle Scholar
  16. Bingham, J. A. C. (2000). ADSL, VDSL, and Multicarrier Modulation. Wiley Interscience.Google Scholar
  17. Bingham, J. (1990). “Multicarrier modulation for data transmission: An idea whose time has come.” Communications Magazine, IEEE 28(5): 5–14.CrossRefMathSciNetGoogle Scholar
  18. Borjesson, P. and C. E. Sundberg (1979). “Simple Approximations of the Error Function Q(x) for Communications Applications.” Communications, IEEE Transactions on 27(3): 639–643.CrossRefGoogle Scholar
  19. Cahn, C. (1960). “Combined digital phase and amplitude modulation communication systems.” Communications Systems, IRE Transactions on 8(3): 150–155.CrossRefGoogle Scholar
  20. Cahn, C. (1959). “Performance of digital phase-modulation communication systems.” Communications Systems, IRE Transactions on 7(1): 3–6.CrossRefGoogle Scholar
  21. Campopiano, C. and B. Glazer (1962). “A coherent digital amplitude and phase modulation scheme.” Communications Systems, IRE Transactions on 10(1): 90–95.CrossRefGoogle Scholar
  22. Chiani, M. et al. (2003), “New exponential bounds and approximations to the computation of error probability in fading channels,” Wireless Communications IEEE Trans. on 2(4): 840–845.CrossRefGoogle Scholar
  23. Cimini Jr, L. (1985). “Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing.” Communications, IEEE Transactions on 33(7): 665–675.CrossRefGoogle Scholar
  24. Cooper, G. R. and C. D. McGillem (1986). Modern Communications and Spread Spectrum. New York, N. Y., McGraw-Hill.Google Scholar
  25. Corazza, G. E. and G. Ferrari (2002). “New bounds for the Marcum Q-function.” Information Theory, IEEE Transactions on 48(11): 3003–3008.CrossRefzbMATHMathSciNetGoogle Scholar
  26. Couch, L. W. (2007). Digital and analog communication systems. Upper Saddle River, N.J., Pearson/Prentice Hall.Google Scholar
  27. Davenport, W. and Root, W. (1958). Random Signals and Noise. New York: McGraw-Hill.zbMATHGoogle Scholar
  28. Edbauer, F. (1992). “Bit error rate of binary and quaternary DPSK signals with multiple differential feedback detection.” Communications, IEEE Transactions on 40(3): 457–460.CrossRefzbMATHGoogle Scholar
  29. Elnoubi, S. (2006). Analysis of GMSK with discriminator detection in mobile radio channels, Vehicular Technology, IEEE Transactions on 35(2): 71–76.CrossRefGoogle Scholar
  30. Feher, K. (1991). “MODEMs for emerging digital cellular-mobile radio system.” Vehicular Technology, IEEE Transactions on 40(2): 355–365.CrossRefGoogle Scholar
  31. Feher, K. (1995). Wireless Digital Communications: Modulation & Spread Spectrum Applications. Upper Saddle River, N. J. Prentice-Hall.Google Scholar
  32. Forney Jr, G., R. Gallager, et al. (1984). “Efficient modulation for band-limited channels.” Selected Areas in Communications, IEEE Journal on 2(5): 632–647.CrossRefGoogle Scholar
  33. Franks, L. (1968). “Further Results on Nyquist’s Problem in Pulse Transmission.” Communication Technology, IEEE Transactions on 16(2): 337–340.CrossRefGoogle Scholar
  34. Gagliardi, R. M. (1988). Introduction to Communications Engineering. New York, N. Y., John Wiley & Sons.Google Scholar
  35. Gallager, R. G. (2008). Principles of digital communication. Cambridge; New York, Cambridge University Press.zbMATHGoogle Scholar
  36. Gao, X. Q., X. H. You, et al. (2006). “An efficient digital implementation of multicarrier CDMA system based on generalized DFT filter banks.” Selected Areas in Communications, IEEE Journal on 24(6): 1189–1198.CrossRefGoogle Scholar
  37. Goldsmith, A. (2005). Wireless communications. New York, Cambridge University Press.Google Scholar
  38. Gradshteyn, I. S., I. M. Ryzhik (2007). Table of integrals, series and products. Oxford, Academic.zbMATHGoogle Scholar
  39. Gronemeyer, S. and A. McBride (1976). “MSK and offset QPSK modulation.” Communications, IEEE Transactions on 24(8): 809–820.CrossRefGoogle Scholar
  40. Hambley, A. and O. Tanaka (1984). “Generalized serial MSK modulation.” Communications, IEEE Transactions on 32(3): 305–308.CrossRefGoogle Scholar
  41. Haykin, S. M., M. Moher (2005). Modern Wireless Communications. Upper Saddle River, N. J., Prentice-Hall.Google Scholar
  42. Haykin, S. M. (2001). Digital communications. New York, Wiley.Google Scholar
  43. Helstrom, C. (1960). “The comparison of digital communication systems.” Communications Systems, IRE Transactions on 8(3): 141–150.CrossRefGoogle Scholar
  44. Helstrom, C. W. (1968). Statistical theory of signal detection. Oxford, New York, Pergamon Press.Google Scholar
  45. Helstrom, C. W. (1998). “Approximate inversion of Marcum’s Q-function.” Aerospace and Electronic Systems, IEEE Transactions on 34(1): 317–319.Google Scholar
  46. Isukapalli, Y. and B. Rao (2008). “An Analytically Tractable Approximation for the Gaussian Q-Function.” Communications Letters, IEEE 12(9): 669–671.CrossRefGoogle Scholar
  47. Karagiannidis, G. K. and A. S. Lioumpas (2007). “An Improved Approximation for the Gaussian Q-Function.” Communications Letters, IEEE 11(8): 644–646.CrossRefGoogle Scholar
  48. Kim, K. and Polydoros (1988). A. “Digital Modulation Classification: The BPSK versus the QPSK Case,” Proceedings of MILCOM ‘88, pp. 24.4.1–24.4.6, San Diego, California, October 26–29, 1988.Google Scholar
  49. Kisel, A. V. (1999). “An extension of pulse shaping filter theory.” Communications, IEEE Transactions on 47(5): 645–647.CrossRefGoogle Scholar
  50. Klymyshyn, D., S. Kumar, et al. (1999). “Direct GMSK modulation with a phase-locked power oscillator.” Vehicular Technology, IEEE Transactions on 48(5): 1616–1625.CrossRefGoogle Scholar
  51. Kuchi, K. and V. Prabhu (1999). Power spectral density of GMSK modulation using matrix methods, Military Communications Conference Proceedings, 1999. MILCOM 1999. IEEE, Volume: 1, 1999, Page(s): 45–50 vol.1Google Scholar
  52. Lindsey, W. C. & M. K. Simon (1973). Telecommunication Systems Engineering. Englewood Cliffs, N.J., Prentice-Hall.Google Scholar
  53. Liu, H. and U. Tureli (1998). “A high-efficiency carrier estimator for OFDM communications.” Communications Letters, IEEE 2(4): 104–106.CrossRefGoogle Scholar
  54. Linz, A. and A. Hendrickson (1996). “Efficient implementation of an IQ GMSK modulator.” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on 43(1): 14–23.CrossRefGoogle Scholar
  55. R. W. Lucky, J. Salz, and E. J. Weldon, Jr. (1968). Principles of Data Communication. New York, NY: McGraw-Hill.Google Scholar
  56. Makrakis, D. and K. Feher (1990). “Optimal noncoherent detection of PSK signals.” Electronics Letters 26(6): 398–400.CrossRefGoogle Scholar
  57. Miller, L. E. and J. S. Lee (1998). “BER expressions for differentially detected pi/4 DQPSK modulation.” Communications, IEEE Transactions on 46(1): 71–81.CrossRefGoogle Scholar
  58. Miyagaki, Y., N. Morinaga, et al. (1978). “Error probability characteristics for CPSK signal through m-distributed fading channel.” Communications, IEEE Transactions on 26(1): 88–100.CrossRefzbMATHGoogle Scholar
  59. Molisch, A. F. (2005). Wireless communications. Chichester, England; Hoboken, NJ, John Wiley & Sons.Google Scholar
  60. Murota, K. (2006). “Spectrum efficiency of GMSK land mobile radio.” Vehicular Technology, IEEE Transactions on 34(2): 69–75.CrossRefGoogle Scholar
  61. Murota, K., and Hirade, K. (1981). “GMSK modulation for digital mobile radio telephony.” IEEE Trans. Comm. COM-29: 1044–1050.Google Scholar
  62. Noguchi, T., Y. Daido, et al. (1986). “Modulation techniques for microwave digital radio.” IEEE Communications Magazine 24: 21–30.CrossRefGoogle Scholar
  63. Nuttall, A. (1975). “Some integrals involving the “Q_M”> function (Corresp.).” Information Theory, IEEE Transactions on 21(1): 95–96.Google Scholar
  64. Nuttall, A. and F. Amoroso (1965). “Minimum Gabor bandwidth of M-ary orthogonal signals.” Information Theory, IEEE Transactions on 11(3): 440–444.CrossRefzbMATHGoogle Scholar
  65. Nyquist, H. (2002). “Certain topics in telegraph transmission theory.” Proceedings of the IEEE 90(2): 280–305.CrossRefGoogle Scholar
  66. Oetting, J. (1979). “A comparison of modulation techniques for digital radio.” Communications, IEEE Transactions on 27(12): 1752–1762.CrossRefzbMATHGoogle Scholar
  67. Olivier, J. C., L. Sang-Yick, et al. (2003). “Efficient equalization and symbol detection for 8-PSK EDGE cellular system.” Vehicular Technology, IEEE Transactions on 52(3): 525–529.CrossRefGoogle Scholar
  68. Papoulis, A. and S. U. Pillai (2002). Probability, random variables, and stochastic processes. Boston, McGraw-Hill.Google Scholar
  69. Pasupathy, S. (1979). “Minimum shift keying: A spectrally efficient modulation.” Communications Magazine, IEEE 17(4): 14–22.CrossRefGoogle Scholar
  70. Prabhu, V. (1980). “The detection efficiency of 16-ary QAM’.” Bell Syst. Tech. J 59(1): 639–656.zbMATHGoogle Scholar
  71. Prabhu, V. (1969). “Error-Rate Considerations for Digital Phase-Modulation Systems.” Communication Technology, IEEE Transactions on 17(1): 33–42.CrossRefGoogle Scholar
  72. Prabhu, V. (1973). “Error Probability Performance of M-ary CPSK Systems With Intersymbol Interference.” Communications, IEEE Transactions on 21(2): 97–109.CrossRefGoogle Scholar
  73. Prabhu, V. (1976a). “Bandwidth Occupancy in PSK Systems.” Communications, IEEE Transactions on 24(4): 456–462.CrossRefzbMATHMathSciNetGoogle Scholar
  74. Prabhu, V. K. (1976b). “PSK Performance with Imperfect Carrier Phase Recovery.” Aerospace and Electronic Systems, IEEE Transactions on AES-12(2): 275–286.Google Scholar
  75. Prabhu, V. K. (1981). “MSK and Offset QPSK Modulation with Bandlimiting Filters.” Aerospace and Electronic Systems, IEEE Transactions on AES-17(1): 2–8.Google Scholar
  76. Prabhu, V. and J. Salz (1981). “On the performance of phase-shift-keying systems.” AT T Technical Journal 60: 2307–2343.zbMATHGoogle Scholar
  77. Prasad, R. (2004). OFDM for wireless communications systems. Boston, Artech House.Google Scholar
  78. Proakis, J. G. (2001). Digital communications. Boston, McGraw-Hill.Google Scholar
  79. Rappaport, T. S. (2002). Wireless communications: principles and practice. Upper Saddle River, N.J., Prentice Hall PTR.Google Scholar
  80. Rowe, H. and V. Prabhu (1975). “Power spectrum of a digital, frequency-modulation signal.” AT T Technical Journal 54: 1095–1125.zbMATHMathSciNetGoogle Scholar
  81. Russell, M. and G. L. Stuber (1995). Interchannel interference analysis of OFDM in a mobile environment, EEE Vehicular Technology Conference, pp. 820–824.Google Scholar
  82. Sadr, R. and J. K. Omura (1988). “Generalized minimum shift-keying modulation techniques.” Communications, IEEE Transactions on 36(1): 32–40.CrossRefGoogle Scholar
  83. Salz, J. (1970). “Communications Efficiency of Certain Digital Modulation Systems.” Communication Technology, IEEE Transactions on 18(2): 97–102.CrossRefGoogle Scholar
  84. Sampei, S. (1997). Applications of Digital Wireless Technologies to Global Wireless Telecommunications. Upper Saddle River, N. J., Prentice-Hall.Google Scholar
  85. Sari, H., G. Karam, et al. (1994). An analysis of orthogonal frequency-division multiplexing for mobile radio applications, Vehicular Technology Conference, 1994 IEEE 44th, 1653–1639.Google Scholar
  86. Sathananthan, K. and C. Tellambura (2001). “Probability of error calculation of OFDM systems with frequency offset.” Communications, IEEE Transactions on 49(11): 1884–1888.CrossRefzbMATHGoogle Scholar
  87. Sayar, B. and S. Pasupathy (1986). “Further results on Nyquist’s third criterion.” Proceedings of the IEEE 74(10): 1460–1462.CrossRefGoogle Scholar
  88. Schwartz, M. (1980). Information transmission, modulation, and noise: a unified approach to communication systems. New York, McGraw-Hill.Google Scholar
  89. Schwartz, M. et al. (1996). Communication Systems and Techniques. Piscataway, NJ., IEEE Press.Google Scholar
  90. Schwartz, M. (2005). Mobile wireless communications. Cambridge, UK; New York, Cambridge University Press.Google Scholar
  91. Shankar, P. (2002). Introduction to wireless systems, Wiley New York.Google Scholar
  92. Shanmugam, K. S. (1979). Digital and analog communication systems. New York, Wiley.Google Scholar
  93. Simon, M. (1998). “A new twist on the Marcum Q-function and its application.” Communications Letters, IEEE 2(2): 39–41.CrossRefGoogle Scholar
  94. Simon, M. (1976). “A generalization of minimum-shift-keying (MSK)-type signaling based upon input data symbol pulse shaping.” Communications, IEEE Transactions on 24(8): 845–856.CrossRefzbMATHGoogle Scholar
  95. Simon, M., S. Hinedi, et al. (1995). Digital communication techniques: signal design and detection, Prentice Hall PTR.Google Scholar
  96. Simon, M. K. (2002). “The Nuttall Q function - its relation to the Marcum Q function and its application in digital communication performance evaluation.” Communications, IEEE Transactions on 50(11): 1712–1715.CrossRefGoogle Scholar
  97. Simon, M. K. and M.-S. Alouini (2005). Digital communication over fading channels. Hoboken, N.J., Wiley-Interscience.Google Scholar
  98. Simon, M. K. and M. S. Alouini (2003). “Some new results for integrals involving the generalized Marcum Q function and their application to performance evaluation over fading channels.” Wireless Communications, IEEE Transactions on 2(4): 611–615.CrossRefGoogle Scholar
  99. Simon, M. K. and D. Divsalar (1997). “On the optimality of classical coherent receivers of differentially encoded M-PSK.” Communications Letters, IEEE 1(3): 67–70.CrossRefGoogle Scholar
  100. Sklar, B. (2001). Digital communications: fundamentals and applications. Upper Saddle River, N.J., Prentice-Hall PTR.Google Scholar
  101. Sklar, B. (1983a). “A structured overview of digital communications-A tutorial review-part I.” Communications Magazine, IEEE 21(5): 4–17.CrossRefGoogle Scholar
  102. Sklar, B. (1983b). “A structured overview of digital communications--A tutorial review--Part II.” Communications Magazine, IEEE 21(7): 6–21.CrossRefGoogle Scholar
  103. Sklar, B. (1993). “Defining, designing, and evaluating digital communication systems.” Communications Magazine, IEEE 31(11): 91–101.CrossRefMathSciNetGoogle Scholar
  104. Stuber, G. L. (2002). Principles of mobile communication. New York, Kluwer Academic.Google Scholar
  105. Sundberg, C. E. (1986). “Continuous phase modulation.” Communications Magazine, IEEE 24(4): 25–38.CrossRefMathSciNetGoogle Scholar
  106. Svensson, A. and C. Sundberg (1985). “Serial MSK-type detection of partial response continuous phase modulation.” Communications, IEEE Transactions on 33(1): 44–52.CrossRefGoogle Scholar
  107. Taub, H. and D. L. Schilling (1986). Principles of communication systems. New York, McGraw-Hill.Google Scholar
  108. Thomas, C., M. Weidner, et al. (1974). “Digital amplitude-phase keying with M-ary alphabets.” Communications, IEEE Transactions on 22(2): 168–180.CrossRefGoogle Scholar
  109. Van Trees, H. L. (1968). Detection, Estimation and Modulation Theory New York, N. Y., John Wiley & Sons.Google Scholar
  110. Webb, W. (1992). “QAM: the modulation scheme for future mobile radio communications?” Electronics & Communication Engineering Journal 4(4): 167–176.CrossRefGoogle Scholar
  111. Winters, J. H. (2000). Smart antennas for the EDGE wireless TDMA system. Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000. AS-SPCC. The IEEE 2000.Google Scholar
  112. Wojnar, A. H. (1986). “Unknown bounds on performance in Nakagami channels,” Communications, IEEE Transactions on 34(1): 22–24.CrossRefGoogle Scholar
  113. Wu, Y. and W. Y. Zou (1995). “Orthogonal frequency division multiplexing: a multi-carrier modulation scheme.” Consumer Electronics, IEEE Transactions on 41(3): 392–399.CrossRefGoogle Scholar
  114. Yunfei, C. and N. C. Beaulieu (2007). “Solutions to Infinite Integrals of Gaussian Q-Function Products and Some Applications.” Communications Letters, IEEE 11(11): 853–855.CrossRefGoogle Scholar
  115. Ziemer, R. and C. Ryan (1983). “Minimum-shift keyed modem implementations for high data rates.” Communications Magazine, IEEE 21(7): 28–37.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Electrical and Computer EngineeringDrexel UniversityPhiladelphiaUSA

Personalised recommendations