Fading and Shadowing in Wireless Systems pp 7-108 | Cite as

# Concepts of Probability and Statistics

## Abstract

In this chapter, we examined some theoretical aspects of probability density functions and distributions encountered in the study of fading and shadowing in wireless channels. We started with the basic definition of probability, then discussed density functions and properties relating to the analysis of fading and shadowing. We also examined the transformations of random variables in conjunction with relationships of different types of random variables. This is important in the study of diversity and modeling of specific statistical behavior of the wireless channels. The density functions of some of the functions of two or more random variables were derived. We examined order statistics, placing emphasis on the density functions of interest in diversity analysis. Concepts of stochastic processes and their properties were outlined. Similarly, the characteristics of noise were delineated within the context of signal detection. In addition, this study included an exploration of ways of expressing some of the densities in more compact forms using the hypergeometric functions and MeijerG functions.

## Keywords

Cumulative Distribution Function Gaussian Random Variable Generalize Gamma Incomplete Gamma Function Chebyshev Inequality## References

- Aalo, V. A. and T. Piboongungon (2005). On the multivariate generalized gamma distribution with exponential correlation. Global Telecommunications Conference, 2005. GLOBECOM ‘05. IEEE: 3–5.Google Scholar
- Aalo, V. and J. Zhang (1999). “On the effect of cochannel interference on average error rates in Nakagami-fading channels.”
*Communications Letters, IEEE***3**(5): 136–138.CrossRefGoogle Scholar - Abdi, A. and M. Kaveh (1998). “K distribution: an appropriate substitute for Rayleigh-lognormal distribution in fading-shadowing wireless channels.”
*Electronics Letters***34**(9): 851–852.CrossRefGoogle Scholar - Abdi, A. and M. Kaveh (1999).
*On the utility of gamma PDF in modeling shadow fading (slow fading)*. Vehicular Technology Conference, 1999 IEEE 49^{th}: 2308–2312.Google Scholar - Abramowitz, M., Segun, I. A., eds. (1972).
*Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables*, New York: Dover Publications.MATHGoogle Scholar - Abu-Dayya, A. A. and N. C. Beaulieu (1994). “Outage probabilities in the presence of correlated lognormal interferers.”
*Vehicular Technology, IEEE Transactions on***43**(1): 164–173.CrossRefGoogle Scholar - Abu-Salih, M. (1983). “Distributions of the product and the quotient of power-function random variables.”
*Arab J. Math***4**: 1–2.MathSciNetGoogle Scholar - Adamchik, V. (1995). “The evaluation of integrals of Bessel functions via G-function identities.”
*Journal of Computational and Applied Mathematics***64**(3): 283–290.MATHMathSciNetCrossRefGoogle Scholar - Alouini, M., et al. (2002). “Sum of gamma variates and performance of wireless communication systems over Nakagami-fading channels.”
*Vehicular Technology, IEEE Transactions on***50**(6): 1471–1480.CrossRefGoogle Scholar - Alouini, M. S. and M. K. Simon (1999). “Performance of coherent receivers with hybrid SC/MRC over Nakagami-m fading channels.”
*Vehicular Technology, IEEE Transactions on***48**(4): 1155–1164.CrossRefGoogle Scholar - Alouini, M. S. and M. K. Simon (2000). “An MGF-based performance analysis of generalized selection combining over Rayleigh fading channels.”
*Communications, IEEE Transactions on***48**(3): 401–415.CrossRefGoogle Scholar - Alouini, M. and M. Simon (2003). “Dual diversity over correlated log-normal fading channels.”
*Communications, IEEE Transactions on***50**(12): 1946–1959.CrossRefGoogle Scholar - Alouini, M. S. and M. K. Simon (2006). “Performance of generalized selection combining over Weibull fading channels.”
*Wireless Communications & Mobile Computing***6**(8): 1077–1084.CrossRefGoogle Scholar - Anastassopoulos, V. et al. (1999). “High resolution radar clutter statistics,”
*Aerospace and Electronics Systems, IEEE Transactions on*,**35(1)**: 43–60.CrossRefGoogle Scholar - Andersen, J. B. (2002). Statistical distributions in mobile communications using multiple scattering. presented at the
*27th URSI General Assembly*, Maastricht, Netherlands.Google Scholar - Annamalai, A. et al. (2006). “Analysis of generalized selection diversity systems in wireless channels.”
*Vehicular Technology, IEEE Transactions on***55**(6): 1765–1775.Google Scholar - Annamalai, A. et al. (2005). “A general method for calculating error probabilities over fading channels.”
*Communications, IEEE Transactions on***53**(5): 841–852.CrossRefGoogle Scholar - Atapattu, S. et al. (2010).
*Representation of Composite Fading and Shadowing Distributions by Using Mixtures of Gamma Distributions*. Wireless Communications and Networking Conference (WCNC), 2010 IEEE. 1:5.Google Scholar - Beaulieu, N. C. (1990). “An infinite series for the computation of the complementary probability distribution function of a sum of independent random variables and its application to the sum of Rayleigh random variables.”
*Communications, IEEE Transactions on***38**(9): 1463–1474.CrossRefGoogle Scholar - Beaulieu, N. et al. (1995). “Estimating the distribution of a sum of independent lognormal random variables.”
*Communications, IEEE Transactions on***43**(12): 2869.Google Scholar - Beaulieu, N. and Q. Xie (2004). “An optimal lognormal approximation to lognormal sum distributions.”
*Vehicular Technology, IEEE Transactions on***53**(2): 479–489.CrossRefGoogle Scholar - Benedetto, S. and E. Biglieri (1999).
*Principles of digital transmission: with Wireless Applications*. New York, Kluwer Academic/Plenum Press.MATHGoogle Scholar - Bithas, P. et al. (2006). “On the performance analysis of digital communications over generalized-K fading channels.”
*Communications Letters, IEEE***10**(5): 353–355.CrossRefGoogle Scholar - Bithas, P. S. et al. (2007). “Dual diversity over correlated Rician fading channels,”
*J. Comm & Networks*.**9**(1) 1–8.Google Scholar - L. E. Blumenson and K. S. Miller (1963). “Properties of Generalized Rayleigh Distributions,”
*The Annals of Mathematical Statistics***34**(3) 903–910.MATHMathSciNetCrossRefGoogle Scholar - Brennan, D. G. (1959). “Linear diversity combining techniques”,
*Proc. IRE***47**(6): 1075–1102.CrossRefGoogle Scholar - Bryson, B. C. (1974). “Heavy tailed distributions: Properties and tests,”
*Technometrics***16**(1) 61–68.MATHMathSciNetCrossRefGoogle Scholar - Cardieri, P. and T. Rappaport (2001). “Statistical analysis of co-channel interference in wireless communications systems.”
*Wireless Communications and Mobile Computing***1**(1): 111–121.CrossRefGoogle Scholar - Carter, B. and M. Springer (1977). “The distribution of products, quotients and powers of independent H-function variates.”
*SIAM Journal on Applied Mathematics***33**(4): 542–558.MATHMathSciNetCrossRefGoogle Scholar - Cheng, J. et al. (2004). “Performance of digital linear modulations on Weibull slow-fading channels.”
*Communications, IEEE Transactions on***52**(8): 1265–1268.CrossRefGoogle Scholar - Chiani, M. (1999). “Integral representation and bounds for Marcum Q-function.”
*Electronics Letters***35**(6): 445–446.CrossRefGoogle Scholar - Cooper, G. R. and McGillem, C. D. (1986).
*Modern communications and Spread Spectrum*. New York. McGraw-Hill.Google Scholar - Cotton, S. L. and W. G. Scanlon (2007). “Higher Order Statistics for Lognormal Small-Scale Fading in Mobile Radio Channels.”
*Antennas and Wireless Propagation Letters, IEEE***6**: 540–543.CrossRefGoogle Scholar - Couch, L. W. (2007).
*Digital and analog communication systems*. Upper Saddle River, N.J., Pearson/Prentice Hall.Google Scholar - Coulson, A. J. et al. (1998a). “Improved fading distribution for mobile radio,”
*Communications, IEE Proceedings***145**(3) 197–202.CrossRefGoogle Scholar - Coulson, A. J., et al. (1998b). “A Statistical Basis for Lognormal Shadowing Effects in Multipath Fading Channels,”
*Communications, IEEE Trans. on***46**(4) 494–502.CrossRefGoogle Scholar - da Costa, B. D. and M. D. Yacoub (2008). “Moment generating functions of generalized fading distributions and applications.”
*Communications Letters, IEEE***12**(2): 112–114.CrossRefGoogle Scholar - Evans, M., N. A. J. Hastings, et al. (2000).
*Statistical distributions*. New York, John Wiley.MATHGoogle Scholar - Filho, J. C. S. S. et al. (2005). “Simple accurate lognormal approximation to lognormal sums.”
*Electronics Letters***41**(18): 1016–1017.CrossRefGoogle Scholar - Frery, A. et al. (2002). “A model for extremely heterogeneous clutter.”
*Geoscience and Remote Sensing, IEEE Transactions on***35**(3): 648–659.CrossRefGoogle Scholar - Gagliardi, R. M. (1988).
*Introduction to Communications Engineering*New York, John Wiley.Google Scholar - Gallager, R. G. (2008).
*Principles of digital communication*. Cambridge; New York, Cambridge University Press.MATHGoogle Scholar - Gaur, S. and Annamalai A. (2003). “Some Integrals Involving the \( {Q_m}\left( {a\sqrt {x}, b\sqrt {x} } \right) \) with Application to Error Probability Analysis of Diversity Receivers,”
*Vehicular Technology, IEEE Transactions on***52**(6) 1568–1575.Google Scholar - Goldsmith, A. (2005).
*Wireless Communications*. New York, Cambridge University Press.Google Scholar - Goodman, J. W. (1985).
*Statistical Optics*. New York. Wiley.Google Scholar - Gradshteyn, I. S., I. M. Ryzhik (2007).
*Table of integrals, series and products*. Oxford, Academic.MATHGoogle Scholar - Griffiths, J. and McGeehan, J. P. (1982). “Inter relationship between some statistical distributions used in radio-wave propagation”,
*Comm, Radar and Sig. Proc, IEE Proceedings on***129**(6) 411–417.Google Scholar - Gupta, R. D. and Kundu, D. (1999). “Generalized exponential distributions,”
*Austral. & New Zealand J. Statistics***41**(2), 173–188.MATHMathSciNetCrossRefGoogle Scholar - Hansen, F. and F. I. Meno (1977). “Mobile fading; Rayleigh and lognormal superimposed.”
*Vehicular Technology, IEEE Transactions on***26**(4): 332–335.CrossRefGoogle Scholar - Haykin, S. S. (2001).
*Digital communications*. New York, Wiley.Google Scholar - Helstrom, C. W. (1968).
*Statistical theory of signal detection*. Oxford, New York, Pergamon Press.Google Scholar - Helstrom, C. W. (1991).
*Probability and stochastic processes for engineers*. New York, Macmillan.Google Scholar - Helstrom, C. W. (1992). “Computing the generalized Marcum Q function.”
*Information Theory, IEEE Transactions on***38**(4): 1422–1428.CrossRefGoogle Scholar - Helstrom, C. W. (1998). “Approximate inversion of Marcum’s Q-function.”
*Aerospace and Electronic Systems, IEEE Transactions on***34**(1): 317–319.CrossRefGoogle Scholar - Holm, H. and M. S. Alouini (2004). “Sum and difference of two squared correlated Nakagami variates in connection with the McKay distribution.”
*Communications, IEEE Transactions on***52**(8): 1367–1376.CrossRefGoogle Scholar - Hudson, J. E. (1996). A lognormal fading model and cellular radio performance. Global Telecommunications Conference, 1996. GLOBECOM ‘96. ‘Communications: The Key to Global Prosperity.
**2**: 1187–1191.Google Scholar - Iskander, R. D. and Zoubir, A. M. (1996). “On Coherent Modeling of Non-Gaussian Radar Clutter,” Proc. 8th IEEE Signal Processing Workshop on statistical Signal and Array Processing: 226–229.Google Scholar
- Iskander, D. R. et al. (1999). “A method for estimating the parameters of the K distribution,”
*Signal Processing, IEEE Transactions on***47**: 1147–1151.CrossRefGoogle Scholar - Ismail, M. H. and M. M. Matalgah (2006). “On the use of Pade approximation for performance evaluation of maximal ratio combining diversity over Weibull fading channels.”
*Eurasip Journal on Wireless Communications and Networking***6**: 62–6.Google Scholar - Jakeman, E. and R. Tough (1987). “Generalized K distribution: a statistical model for weak scattering.”
*Journal of the Optical Society of America A***4**(9): 1764–1772.CrossRefGoogle Scholar - Jakes, W. C. (1994).
*Microwave mobile communications*. Piscataway, NJ, IEEE Press.CrossRefGoogle Scholar - Kabe, D. G. (1958). “Some Applications of Meijer-G Functions to Distribution Problems in Statistics,”
*Biometrika*,**45**(3/4): 578–580.MATHCrossRefGoogle Scholar - Karadimas, P. and S. A. Kotsopoulos (2008). “A Generalized Modified Suzuki Model with Sectored and Inhomogeneous Diffuse Scattering Component.”
*Wireless Personal Communications***47**(4): 449–469.CrossRefGoogle Scholar - Karadimas, P. and S. A. Kotsopoulos (2010). “A Modified Loo Model with Partially Blocked and Three Dimensional Multipath Scattering: Analysis, Simulation and Validation.”
*Wireless Personal Communications***53**(4): 503–528.CrossRefGoogle Scholar - Karagiannidis, G., N. Sagias, et al. (2006). “Closed-form statistics for the sum of squared Nakagami-m variates and its applications.”
*Communications, IEEE Transactions on***54**(8): 1353–1359.CrossRefGoogle Scholar - Karagiannidis, G. K. et al. (2003a). “Performance analysis of triple selection diversity over exponentially correlated Nakagami- m fading channels,”
*Communications, IEEE Transactions on***51**(8):1245–1248.CrossRefGoogle Scholar - Karagiannidis, G. K. et al. (2003b). “On the multivariate Nakagami-m distribution with exponential correlation,”
*Communications, IEEE Transactions on***51**(8):1240–1244.CrossRefGoogle Scholar - Karagiannidis, G. K. et al. (2007). “N*Nakagami: A novel statistical model for cascaded fading channels,”
*Communications, IEEE Transactions**on***55**(8) 1453–145.MathSciNetCrossRefGoogle Scholar - Karmeshu, J. and R. Agrawal (2007). “On efficacy of Rayleigh-inverse Gaussian distribution over K-distribution for wireless fading channels.”
*Wireless Communications & Mobile Computing***7**(1): 1–7.CrossRefGoogle Scholar - Korn, I. and Foneska, J. P. (2001). “M-CPM with MRC Diversity in Rician-, Hoyt-, and Nakagami-Fading Channels,”
*Vehicular Technology, IEEE Transactions on***50**(4) 1182–118.Google Scholar - Kostic, I. M. (2005). “Analytical approach to performance analysis for channel subject to shadowing and fading.”
*Communications, IEE Proceedings-***152**(6): 821–827.CrossRefGoogle Scholar - Kotz, S. and J. Adams (1964). “Distribution of sum of identically distributed exponentially correlated gamma-variables.”
*The Annals of Mathematical Statistics*: 277–283.Google Scholar - Kundu, K. and Raqab, M. Z. (2005). “Generalized Rayleigh distribution: different methods of estimations,”
*Computational Statistics & Data Analysis*(**49**) 187–200.MATHMathSciNetCrossRefGoogle Scholar - Lam, C. L. J. and T. Le-Ngoc (2006). “Estimation of typical sum of lognormal random variables using log shifted gamma approximation.”
*Communications Letters, IEEE***10**(4): 234–23.CrossRefGoogle Scholar - Lam, C. L. J. and L.-N. Tho (2007). “Log-Shifted Gamma Approximation to Lognormal Sum Distributions.”
*Vehicular Technology, IEEE Transactions on***56**(4): 2121–2129.CrossRefGoogle Scholar - Laourine, A. et al. (2008). “On the capacity of generalized-K fading channels.”
*Wireless Communications, IEEE Transactions on***7**(7): 2441–2445.CrossRefGoogle Scholar - Laourine, A., et al. (2009). “On the Performance Analysis of Composite Multipath/Shadowing Channels Using the G-Distribution,”
*Communications, IEEE Transactions on***57**(4): 1162–1170.CrossRefGoogle Scholar - Lee, R. and B. Holland (1979). “Distribution of a ratio of correlated gamma random variables.”
*SIAM Journal on Applied Mathematics***36**(2): 304–320.Google Scholar - D. J. Lewinsky (1983). “Nonstationary probabilistic target and cluttering scattering models,”
*Aerospace Electronics and Systems, IEEE Transactions on***31**: 490–49.Google Scholar - Ligeti, A. (2000). “Outage probability in the presence of correlated lognormal useful and interfering components.”
*Communications Letters*,*IEEE***4**(1): 15–17.CrossRefGoogle Scholar - Lienhard, J. H. and Meyer, P. L. (1967). “A physical basis for the generalized gamma distribution,”
*Quarterly of Appl. Math*.**25**(3) 330–334.MATHGoogle Scholar - Lindsey, W. C. and Simon M. K. (1973).
*Telecommunication Systems Engineering*. Englewood Cliffs, N.J., Prentice-Hall.Google Scholar - Liu, Z. et al. (2008). “Approximating lognormal sum distributions with power lognormal distributions.”
*Vehicular Technology, IEEE Transactions on***57**(4): 2611–2617.CrossRefGoogle Scholar - Ma, Y. and C. C. Chai (2000). “Unified error probability analysis for generalized selection combining in Nakagami fading channels.”
*Selected Areas in Communications, IEEE Journal on***18**(11): 2198–2210.CrossRefGoogle Scholar - Mathai, A. and P. Moschopoulos (1991). “On a multivariate gamma.”
*Journal of Multivariate Analysis***39**(1): 135–153.MATHMathSciNetCrossRefGoogle Scholar - Mathai, A. M. (1993).
*A Handbook of Generalized Special Functions for Statistical and Physical Sciences*. Oxford University Press.Google Scholar - Mathai, A. M. and H. J. Haubold (2008).
*Special functions for applied scientists*. New York, Springer Science+Business Media.Google Scholar - Mathai, A. M. and R. K. Saxena (1973).
*Generalized hypergeometric functions with applications in statistics and physical sciences*. Berlin, New York, Springer.MATHGoogle Scholar - McDaniel, S. T. (1990). “Seafloor reverberation fluctuations”,
*J. Acoust. Soc. Amer**.***88**(3): 1530–1535.MathSciNetCrossRefGoogle Scholar - Middleton, D. (1996).
*An Introduction to Statistical Communications Theory*. Piscataway, N. J, IEEE Press.Google Scholar - Molisch, A. F. (2005).
*Wireless communications*. Chichester, U. K. John Wiley & Sons.Google Scholar - Moschopoulos, P. (1985). “The distribution of the sum of independent gamma random variables.”
*Annals of the Institute of Statistical Mathematics***37**(1): 541–544.MATHMathSciNetCrossRefGoogle Scholar - Nadarajah, S. (2005). “Products, and ratios for a bivariate gamma distribution.”
*Applied Mathematics and Computation***171**(1): 581–595.MATHMathSciNetCrossRefGoogle Scholar - Nadarajah, S. and A. Gupta (2005). “On the product and ratio of Bessel random variables.”
*International Journal of Mathematics and Mathematical Sciences***2005**(18): 2977–2989.MATHMathSciNetCrossRefGoogle Scholar - Nadarajah, S. and A. Gupta (2006a). “Some bivariate gamma distributions.”
*Applied Mathematics Letters***19**(8): 767–774.MATHMathSciNetCrossRefGoogle Scholar - Nadarajah, S. and S. Kotz (2006b). “Bivariate gamma distributions, sums and ratios.”
*Bulletin of the Brazilian Mathematical Society***37**(2): 241–274.MATHMathSciNetCrossRefGoogle Scholar - Nadarajah, S. and S. Kotz (2006). “On the product and ratio of gamma and Weibull random variables.”
*Econometric Theory***22**(02): 338–344.MATHMathSciNetCrossRefGoogle Scholar - Nadarajah, S. and S. Kotz (2007). “A class of generalized models for shadowed fading channels.”
*Wireless Personal Communications***43**(4): 1113–1120.CrossRefGoogle Scholar - Nakagami, M. (1960). The
*m*-distribution—A general formula of intensity distribution of rapid fading, in*Statistical Methods in Radio Wave Propagation*, W. C. Hoffman, Ed. Elmsford, NY: Pergamon.Google Scholar - Nuttall, A. (1975). “Some integrals involving the Q_M function (Corresp.).”
*Information Theory, IEEE Transactions on***21**(1): 95–96.Google Scholar - Nuttall, A. H. (1970). “Alternate forms for numerical evaluation of cumulative probability distributions directly from characteristic functions.”
*Proceedings of the IEEE***58**(11): 1872–1873.CrossRefGoogle Scholar - Nuttall, A. H. (1969). “Numerical evaluation of cumulative probability distribution functions directly from characteristic functions.”
*Proceedings of the IEEE***57**(11): 2071–2072.CrossRefGoogle Scholar - Okui, S. (1981). “Probability Distributions for Ratios of Fading Signal Envelopes and Their Generalization,”
*Electronics and Communications in Japan*64-B(3), 72–80.Google Scholar - Panajotovic, A. S. et al. (2009). “Effect of Microdiversity and Macrodiversity on Average Bit Error Probability in Shadowed Fading Channels in the Presence of Interference.”
*ETRI Journal***31**(5): 500–505.CrossRefGoogle Scholar - Papazafeiropoulos, A. K. and S. A. Kotsopoulos (2011). “The α-λ-μ and α-μ-μ small scale general fading distributions: A unified approach,”
*Wireless Personal Communications***57**: 735–751.CrossRefGoogle Scholar - Papoulis, A. and S. U. Pillai (2002).
*Probability, random variables, and stochastic processes*. Boston, McGraw-Hill.Google Scholar - Patzold, M. (2002).
*Mobile Fading Channels*. Chichester, U. K., John Wiley & Sons, Inc.Google Scholar - Piboongungon, T. and V. A. Aalo (2004). “Outage probability of L-branch selection combining in correlated lognormal fading channels.”
*Electronics Letters***40**(14): 886–888.CrossRefGoogle Scholar - Podolski, H. (1972). “The distribution of a product of n independent random variables with generalized gamma distribution.”
*Demonstratio Math***4**(2): 119–123.MATHMathSciNetGoogle Scholar - Polydorou, D. S. et al. (1999). “Statistical characterization of fading in LOS wireless channels with a finite number of dominant paths. Application in millimeter frequencies.”
*International Journal of Infrared and Millimeter Waves***20**(3): 461–472.CrossRefGoogle Scholar - Proakis, J. G. (2001).
*Digital communications*. Boston, McGraw-Hill.Google Scholar - Provost, S. (1989). “On sums of independent gamma random variables.”
*STATISTICS.***20**(4): 583–591.MATHMathSciNetCrossRefGoogle Scholar - Rappaport, T. S. (2002).
*Wireless communications: principles and practice*. Upper Saddle River, N.J., Prentice Hall PTR.Google Scholar - Rice, S. (1974). “Probability Distributions for Noise Plus Several Sine Waves--The Problem of Computation.”
*Communications, IEEE Transactions on***22**(6): 851–853.CrossRefGoogle Scholar - Rohatgi, V. K. and A. K. M. E. Saleh (2001).
*An introduction to probability and statistics*. New York, Wiley.MATHGoogle Scholar - Saleh, A. & Valenzuela R. A. (1987) “A statistical model for indoor multipath propagation”
*Selected Areas in Communications, IEEE Journal on***5**: 128–137.Google Scholar - Sahu, P. R. & Chaturvedi, A. K. (2005), “Performance analysis of predetection EGC receiver in Weibull fading channel,”
*Electr. Lett.*41(2) 85–86.CrossRefGoogle Scholar - Salo, J. et al. (2006). “The distribution of the product of independent Rayleigh random variables.”
*Antennas and Propagation, IEEE Transactions on***54**(2): 639–643.MathSciNetCrossRefGoogle Scholar - Schwartz, M. (1980).
*Information transmission, modulation, and noise: a unified approach to communication systems*. New York, McGraw-Hill.Google Scholar - Schwartz, M. et al. (1996).
*Communication Systems and Techniques*. Piscataway, NJ., IEEE Press.Google Scholar - Shah, A. et al. (2000). “Exact bit-error probability for optimum combining with a Rayleigh fading Gaussian cochannel interferer.”
*Communications, IEEE Transactions on***48**(6): 908–912.CrossRefGoogle Scholar - Shankar, P. (2002a).
*Introduction to wireless systems*, Wiley New York.Google Scholar - Shankar, P. (2002b). “Ultrasonic tissue characterization using a generalized Nakagami model.”
*Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on***48**(6): 1716–1720.CrossRefGoogle Scholar - Shankar, P. M. (2004). “Error rates in generalized shadowed fading channels.”
*Wireless Personal Communications***28**(3): 233–238.CrossRefGoogle Scholar - Shankar, P. M. (2005). “Outage probabilities in shadowed fading channels using a compound statistical model.”
*Communications, IEE Proceedings on***152**(6): 828–832.CrossRefGoogle Scholar - Shankar, P. M. and Gentile, C. (2010). Statistical Analysis of Short Term Fading and Shadowing in Ultra-Wideband Systems. Communications (ICC), 2010 IEEE International Conference on.Google Scholar
- Shankar, P. M. (2010). “Statistical Models for Fading and Shadowed Fading Channels in Wireless Systems: A Pedagogical Perspective,”
*Wireless Personal Communications*. DOI: 10.1007/s11277-010-9938-2 - Shanmugam, K. S. (1979).
*Digital and analog communication systems*. New York, Wiley.Google Scholar - Shepherd, N. H. (1977). “Radio wave loss deviation and shadow loss at 900 MHZ,”
*Vehicular Technology, IEEE Transactions on***26**(4) 309–313.Google Scholar - Shin, J. et al. (2005). “Statistical modeling of speech signals based on generalized gamma distribution.”
*Signal Processing Letters, IEEE***12**(3): 258–261.CrossRefGoogle Scholar - Sijing, J. and N. C. Beaulieu (2010). BER of antipodal signaling in Laplace noise., 2010 25th Biennial Symposium on Communications (QBSC).Google Scholar
- Simon, M. (2002). “The Nuttall Q function-its relation to the Marcum Q function and its application in digital communication performance evaluation.”
*Communications, IEEE Transactions on***50**(11): 1712–1715.CrossRefGoogle Scholar - Simon, M. et al. (1995).
*Digital communication techniques: signal design and detection*, Prentice Hall PTR.Google Scholar - Simon, M. K. and M. S. Alouini (2003). “Some new results for integrals involving the generalized Marcum Q function and their application to performance evaluation over fading channels.” Wireless
*Communications, IEEE Transactions on***2**(4): 611–615.CrossRefGoogle Scholar - Simon, M. K. and M.-S. Alouini (2005).
*Digital communication over fading channels*. Hoboken, N.J., Wiley-Interscience.Google Scholar - Sklar, B. (1997a). “Rayleigh fading channels in mobile digital communication systems. I. Characterization.”
*Communications Magazine, IEEE***35**(7): 90–100.Google Scholar - Sklar, B. (1997b). “Rayleigh fading channels in mobile digital communication systems. II. Mitigation.”
*Communications Magazine, IEEE***35**(7): 102–109.Google Scholar - Sklar, B. (2001).
*Digital communications: fundamentals and applications*. Upper Saddle River, N.J., Prentice-Hall PTR.Google Scholar - Slimane, B. (2001). “Bounds on the distribution of a sum of independent lognormal random variables.”
*Communications, IEEE Transactions on***49**(6): 975–978.MATHCrossRefGoogle Scholar - Sowerby, K. W. and A. G. Williamson (1987). “Outage probability calculations for a mobile radio system having two log-normal interferers.”
*Electronics Letters***23**(25): 1345–1346.CrossRefGoogle Scholar - Springer, M. and W. Thompson (1966). “The distribution of products of independent random variables.”
*SIAM Journal on Applied Mathematics***14**(3): 511–526.MATHMathSciNetCrossRefGoogle Scholar - Springer, M. and W. Thompson (1970). “The distribution of products of beta, gamma and Gaussian random variables.”
*SIAM Journal on Applied Mathematics***18**(4): 721–737.MATHMathSciNetCrossRefGoogle Scholar - Stacy, E. (1962). “A generalization of the gamma distribution.”
*The Annals of Mathematical Statistics***33**(3): 1187–1192.MATHMathSciNetCrossRefGoogle Scholar - Stacy, E. and G. Mihram (1965). “Parameter estimation for a generalized gamma distribution.”
*Technometrics***7**(3): 349–358.MATHMathSciNetCrossRefGoogle Scholar - Steele, R. and L. Hanzó (1999).
*Mobile radio communications: second and third generation cellular and WATM systems*. Chichester, England; New York, John Wiley & Sons, Inc.Google Scholar - Stuart, A. (1962). “Gamma-distributed products of independent random variables.”
*Biometrika***49**(3–4): 564.MATHMathSciNetGoogle Scholar - Stuber, G. L. (2000).
*Principles of mobile communication*. New York, Kluwer Academic.Google Scholar - Subadar, R. & Sahu, P. R. (2009). “Performance Analysis of Dual MRC Receiver in Correlated Hoyt Fading Channels,”
*Communications Letters, IEEE***13**(6) 405–407.Google Scholar - Suzuki, H. (1977). “A statistical model for urban radio propagation”,
*Communications, IEEE Transactions on***25**: 673–680.CrossRefGoogle Scholar - Tan, C. C. & Beaulieu, N. C. (1997). “Infinite Series Representations of the Bivariate Rayleigh and Nakagami- Distributions,”
*Communications, IEEE Transactions on***45**(10), 1159–1161.CrossRefGoogle Scholar - Taub, H. & D. L. Schilling (1986).
*Principles of communication systems*. New York, McGraw-Hill.Google Scholar - Tellambura, C. and A. Annamalai (1999). “An unified numerical approach for computing the outage probability for mobile radio systems.”
*Communications Letters, IEEE***3**(4): 97–99.CrossRefGoogle Scholar - Tellambura, C. and A. Annamalai (2000). “Efficient computation of erfc(x) for large arguments.”
*Communications, IEEE Transactions on***48**(4): 529–532.MATHCrossRefGoogle Scholar - Tellambura, C. and A. Annamalai (2003).
*Unified performance bounds for generalized selection diversity combining in fading channels*. Wireless Communications and Networking (WCNC), 2003 IEEE.Google Scholar - Tellambura, C. et al. (2003). “Closed form and infinite series solutions for the MGF of a dual-diversity selection combiner output in bivariate Nakagami fading.”
*Communications, IEEE Transactions on***51**(4): 539–542.CrossRefGoogle Scholar - Tjhung, T. T. and C. C. Chai (1999). “Fade statistics in Nakagami-lognormal channels.”
*Communications, IEEE Transactions on***47**(12): 1769–1772.CrossRefGoogle Scholar - Vaughn, R. A., J. B. Anderson, (2003).
*Channels, propagation and Antennas for Mobile Communications*. Herts, U. K., IEE.CrossRefGoogle Scholar - Van Trees, H. L. (1968)
*Detection, estimation, and modulation theory*. Part I. New York: John Wiley and Sons.MATHGoogle Scholar - V.Gh. Voda, B. (2009). “A method constructing density functions: the case for a Generalized Rayleigh variable,”
*Applications of Mathematics***54**(5) 417–43.Google Scholar - Vatalaro, F. (1995). “Generalised Rice-lognormal channel model for wireless communications.”
*Electronics Letters***31**(22): 1899–1900.CrossRefGoogle Scholar - Winters, J. (1987). “Optimum Combining for Indoor Radio Systems with Multiple Users.”
*Communications, IEEE Transactions on***35**(11): 1222–1230.CrossRefGoogle Scholar - Winters, J. H. (1984). “Optimum combining in digital mobile radio with cochannel interference.”
*Vehicular Technology, IEEE Transactions on***33**(3): 144–155.MathSciNetCrossRefGoogle Scholar - Winters, J. H. (1998). “The diversity gain of transmit diversity in wireless systems with Rayleigh fading.”
*Vehicular Technology, IEEE Transactions on***47**(1): 119–123.MathSciNetCrossRefGoogle Scholar - Withers, C. and S. Nadarajah (2008). “MGFs for Rayleigh Random Variables.”
*Wireless Personal Communications***46**(4): 463–468.CrossRefGoogle Scholar - Wolfram (2011) http://functions.wolfram.com/, Wolfram Research, Inc.
- Wongtrairat, W. and P. Supnithi (2009). “Performance of Digital Modulation in Double Nakagami-m Fading Channels with MRC Diversity.”
*Communications, IEICE Transactions on*E92b(2): 559–566.Google Scholar - Yacoub, M. D. (2000). “Fading distributions and co-channel interference in wireless systems.”
*Antennas and Propagation Magazine, IEEE***42**(1): 150–160.CrossRefGoogle Scholar - Yacoub, M. D. (2007a). “The α-μ Distribution: A Physical Fading Model for the Stacy Distribution.”
*Vehicular Technology, IEEE Transactions on***56**(1): 27–34.CrossRefGoogle Scholar - Yacoub, M. D. (2007b). “The μ-μ distribution and the η-μ distribution.”
*Antennas and Propagation Magazine, IEEE***49**(1): 68–81.CrossRefGoogle Scholar - Yue, S. et al. (2001). “A review of bivariate gamma distributions for hydrological applications,”
*J. Hydrology***246**: 1–18.CrossRefGoogle Scholar - Zogas, D. and Karagiannidis, G. K. (2005). “Infinite-Series Representations Associated With the Bivariate Rician Distribution and Their Applications,”
*Communications, IEEE Transactions on***53**(11): 1790–179.CrossRefGoogle Scholar