Concepts of Probability and Statistics

Chapter

Abstract

In this chapter, we examined some theoretical aspects of probability density functions and distributions encountered in the study of fading and shadowing in wireless channels. We started with the basic definition of probability, then discussed density functions and properties relating to the analysis of fading and shadowing. We also examined the transformations of random variables in conjunction with relationships of different types of random variables. This is important in the study of diversity and modeling of specific statistical behavior of the wireless channels. The density functions of some of the functions of two or more random variables were derived. We examined order statistics, placing emphasis on the density functions of interest in diversity analysis. Concepts of stochastic processes and their properties were outlined. Similarly, the characteristics of noise were delineated within the context of signal detection. In addition, this study included an exploration of ways of expressing some of the densities in more compact forms using the hypergeometric functions and MeijerG functions.

References

  1. Aalo, V. A. and T. Piboongungon (2005). On the multivariate generalized gamma distribution with exponential correlation. Global Telecommunications Conference, 2005. GLOBECOM ‘05. IEEE: 3–5.Google Scholar
  2. Aalo, V. and J. Zhang (1999). “On the effect of cochannel interference on average error rates in Nakagami-fading channels.” Communications Letters, IEEE 3(5): 136–138.CrossRefGoogle Scholar
  3. Abdi, A. and M. Kaveh (1998). “K distribution: an appropriate substitute for Rayleigh-lognormal distribution in fading-shadowing wireless channels.” Electronics Letters 34(9): 851–852.CrossRefGoogle Scholar
  4. Abdi, A. and M. Kaveh (1999). On the utility of gamma PDF in modeling shadow fading (slow fading). Vehicular Technology Conference, 1999 IEEE 49th: 2308–2312.Google Scholar
  5. Abramowitz, M., Segun, I. A., eds. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover Publications.MATHGoogle Scholar
  6. Abu-Dayya, A. A. and N. C. Beaulieu (1994). “Outage probabilities in the presence of correlated lognormal interferers.” Vehicular Technology, IEEE Transactions on 43(1): 164–173.CrossRefGoogle Scholar
  7. Abu-Salih, M. (1983). “Distributions of the product and the quotient of power-function random variables.” Arab J. Math 4: 1–2.MathSciNetGoogle Scholar
  8. Adamchik, V. (1995). “The evaluation of integrals of Bessel functions via G-function identities.” Journal of Computational and Applied Mathematics 64(3): 283–290.MATHMathSciNetCrossRefGoogle Scholar
  9. Alouini, M., et al. (2002). “Sum of gamma variates and performance of wireless communication systems over Nakagami-fading channels.” Vehicular Technology, IEEE Transactions on 50(6): 1471–1480.CrossRefGoogle Scholar
  10. Alouini, M. S. and M. K. Simon (1999). “Performance of coherent receivers with hybrid SC/MRC over Nakagami-m fading channels.” Vehicular Technology, IEEE Transactions on 48(4): 1155–1164.CrossRefGoogle Scholar
  11. Alouini, M. S. and M. K. Simon (2000). “An MGF-based performance analysis of generalized selection combining over Rayleigh fading channels.” Communications, IEEE Transactions on 48(3): 401–415.CrossRefGoogle Scholar
  12. Alouini, M. and M. Simon (2003). “Dual diversity over correlated log-normal fading channels.” Communications, IEEE Transactions on 50(12): 1946–1959.CrossRefGoogle Scholar
  13. Alouini, M. S. and M. K. Simon (2006). “Performance of generalized selection combining over Weibull fading channels.” Wireless Communications & Mobile Computing 6(8): 1077–1084.CrossRefGoogle Scholar
  14. Anastassopoulos, V. et al. (1999). “High resolution radar clutter statistics,” Aerospace and Electronics Systems, IEEE Transactions on, 35(1): 43–60.CrossRefGoogle Scholar
  15. Andersen, J. B. (2002). Statistical distributions in mobile communications using multiple scattering. presented at the 27th URSI General Assembly, Maastricht, Netherlands.Google Scholar
  16. Annamalai, A. et al. (2006). “Analysis of generalized selection diversity systems in wireless channels.” Vehicular Technology, IEEE Transactions on 55(6): 1765–1775.Google Scholar
  17. Annamalai, A. et al. (2005). “A general method for calculating error probabilities over fading channels.” Communications, IEEE Transactions on 53(5): 841–852.CrossRefGoogle Scholar
  18. Atapattu, S. et al. (2010). Representation of Composite Fading and Shadowing Distributions by Using Mixtures of Gamma Distributions. Wireless Communications and Networking Conference (WCNC), 2010 IEEE. 1:5.Google Scholar
  19. Beaulieu, N. C. (1990). “An infinite series for the computation of the complementary probability distribution function of a sum of independent random variables and its application to the sum of Rayleigh random variables.” Communications, IEEE Transactions on 38(9): 1463–1474.CrossRefGoogle Scholar
  20. Beaulieu, N. et al. (1995). “Estimating the distribution of a sum of independent lognormal random variables.” Communications, IEEE Transactions on 43(12): 2869.Google Scholar
  21. Beaulieu, N. and Q. Xie (2004). “An optimal lognormal approximation to lognormal sum distributions.” Vehicular Technology, IEEE Transactions on 53(2): 479–489.CrossRefGoogle Scholar
  22. Benedetto, S. and E. Biglieri (1999). Principles of digital transmission: with Wireless Applications. New York, Kluwer Academic/Plenum Press.MATHGoogle Scholar
  23. Bithas, P. et al. (2006). “On the performance analysis of digital communications over generalized-K fading channels.” Communications Letters, IEEE 10(5): 353–355.CrossRefGoogle Scholar
  24. Bithas, P. S. et al. (2007). “Dual diversity over correlated Rician fading channels,” J. Comm & Networks. 9(1) 1–8.Google Scholar
  25. L. E. Blumenson and K. S. Miller (1963). “Properties of Generalized Rayleigh Distributions,” The Annals of Mathematical Statistics 34(3) 903–910.MATHMathSciNetCrossRefGoogle Scholar
  26. Brennan, D. G. (1959). “Linear diversity combining techniques”, Proc. IRE 47(6): 1075–1102.CrossRefGoogle Scholar
  27. Bryson, B. C. (1974). “Heavy tailed distributions: Properties and tests,” Technometrics 16(1) 61–68.MATHMathSciNetCrossRefGoogle Scholar
  28. Cardieri, P. and T. Rappaport (2001). “Statistical analysis of co-channel interference in wireless communications systems.” Wireless Communications and Mobile Computing 1(1): 111–121.CrossRefGoogle Scholar
  29. Carter, B. and M. Springer (1977). “The distribution of products, quotients and powers of independent H-function variates.” SIAM Journal on Applied Mathematics 33(4): 542–558.MATHMathSciNetCrossRefGoogle Scholar
  30. Cheng, J. et al. (2004). “Performance of digital linear modulations on Weibull slow-fading channels.” Communications, IEEE Transactions on 52(8): 1265–1268.CrossRefGoogle Scholar
  31. Chiani, M. (1999). “Integral representation and bounds for Marcum Q-function.” Electronics Letters 35(6): 445–446.CrossRefGoogle Scholar
  32. Cooper, G. R. and McGillem, C. D. (1986). Modern communications and Spread Spectrum. New York. McGraw-Hill.Google Scholar
  33. Cotton, S. L. and W. G. Scanlon (2007). “Higher Order Statistics for Lognormal Small-Scale Fading in Mobile Radio Channels.” Antennas and Wireless Propagation Letters, IEEE 6: 540–543.CrossRefGoogle Scholar
  34. Couch, L. W. (2007). Digital and analog communication systems. Upper Saddle River, N.J., Pearson/Prentice Hall.Google Scholar
  35. Coulson, A. J. et al. (1998a). “Improved fading distribution for mobile radio,” Communications, IEE Proceedings 145(3) 197–202.CrossRefGoogle Scholar
  36. Coulson, A. J., et al. (1998b). “A Statistical Basis for Lognormal Shadowing Effects in Multipath Fading Channels,” Communications, IEEE Trans. on 46(4) 494–502.CrossRefGoogle Scholar
  37. da Costa, B. D. and M. D. Yacoub (2008). “Moment generating functions of generalized fading distributions and applications.” Communications Letters, IEEE 12(2): 112–114.CrossRefGoogle Scholar
  38. Evans, M., N. A. J. Hastings, et al. (2000). Statistical distributions. New York, John Wiley.MATHGoogle Scholar
  39. Filho, J. C. S. S. et al. (2005). “Simple accurate lognormal approximation to lognormal sums.” Electronics Letters 41(18): 1016–1017.CrossRefGoogle Scholar
  40. Frery, A. et al. (2002). “A model for extremely heterogeneous clutter.” Geoscience and Remote Sensing, IEEE Transactions on 35(3): 648–659.CrossRefGoogle Scholar
  41. Gagliardi, R. M. (1988). Introduction to Communications Engineering New York, John Wiley.Google Scholar
  42. Gallager, R. G. (2008). Principles of digital communication. Cambridge; New York, Cambridge University Press.MATHGoogle Scholar
  43. Gaur, S. and Annamalai A. (2003). “Some Integrals Involving the \( {Q_m}\left( {a\sqrt {x}, b\sqrt {x} } \right) \) with Application to Error Probability Analysis of Diversity Receivers,” Vehicular Technology, IEEE Transactions on 52(6) 1568–1575.Google Scholar
  44. Goldsmith, A. (2005). Wireless Communications. New York, Cambridge University Press.Google Scholar
  45. Goodman, J. W. (1985). Statistical Optics. New York. Wiley.Google Scholar
  46. Gradshteyn, I. S., I. M. Ryzhik (2007). Table of integrals, series and products. Oxford, Academic.MATHGoogle Scholar
  47. Griffiths, J. and McGeehan, J. P. (1982). “Inter relationship between some statistical distributions used in radio-wave propagation”, Comm, Radar and Sig. Proc, IEE Proceedings on 129(6) 411–417.Google Scholar
  48. Gupta, R. D. and Kundu, D. (1999). “Generalized exponential distributions,” Austral. & New Zealand J. Statistics 41(2), 173–188.MATHMathSciNetCrossRefGoogle Scholar
  49. Hansen, F. and F. I. Meno (1977). “Mobile fading; Rayleigh and lognormal superimposed.” Vehicular Technology, IEEE Transactions on 26(4): 332–335.CrossRefGoogle Scholar
  50. Haykin, S. S. (2001). Digital communications. New York, Wiley.Google Scholar
  51. Helstrom, C. W. (1968). Statistical theory of signal detection. Oxford, New York, Pergamon Press.Google Scholar
  52. Helstrom, C. W. (1991). Probability and stochastic processes for engineers. New York, Macmillan.Google Scholar
  53. Helstrom, C. W. (1992). “Computing the generalized Marcum Q function.” Information Theory, IEEE Transactions on 38(4): 1422–1428.CrossRefGoogle Scholar
  54. Helstrom, C. W. (1998). “Approximate inversion of Marcum’s Q-function.” Aerospace and Electronic Systems, IEEE Transactions on 34(1): 317–319.CrossRefGoogle Scholar
  55. Holm, H. and M. S. Alouini (2004). “Sum and difference of two squared correlated Nakagami variates in connection with the McKay distribution.” Communications, IEEE Transactions on 52(8): 1367–1376.CrossRefGoogle Scholar
  56. Hudson, J. E. (1996). A lognormal fading model and cellular radio performance. Global Telecommunications Conference, 1996. GLOBECOM ‘96. ‘Communications: The Key to Global Prosperity. 2: 1187–1191.Google Scholar
  57. Iskander, R. D. and Zoubir, A. M. (1996). “On Coherent Modeling of Non-Gaussian Radar Clutter,” Proc. 8th IEEE Signal Processing Workshop on statistical Signal and Array Processing: 226–229.Google Scholar
  58. Iskander, D. R. et al. (1999). “A method for estimating the parameters of the K distribution,” Signal Processing, IEEE Transactions on 47: 1147–1151.CrossRefGoogle Scholar
  59. Ismail, M. H. and M. M. Matalgah (2006). “On the use of Pade approximation for performance evaluation of maximal ratio combining diversity over Weibull fading channels.” Eurasip Journal on Wireless Communications and Networking 6: 62–6.Google Scholar
  60. Jakeman, E. and R. Tough (1987). “Generalized K distribution: a statistical model for weak scattering.” Journal of the Optical Society of America A 4(9): 1764–1772.CrossRefGoogle Scholar
  61. Jakes, W. C. (1994). Microwave mobile communications. Piscataway, NJ, IEEE Press.CrossRefGoogle Scholar
  62. Kabe, D. G. (1958). “Some Applications of Meijer-G Functions to Distribution Problems in Statistics,” Biometrika, 45(3/4): 578–580.MATHCrossRefGoogle Scholar
  63. Karadimas, P. and S. A. Kotsopoulos (2008). “A Generalized Modified Suzuki Model with Sectored and Inhomogeneous Diffuse Scattering Component.” Wireless Personal Communications 47(4): 449–469.CrossRefGoogle Scholar
  64. Karadimas, P. and S. A. Kotsopoulos (2010). “A Modified Loo Model with Partially Blocked and Three Dimensional Multipath Scattering: Analysis, Simulation and Validation.” Wireless Personal Communications 53(4): 503–528.CrossRefGoogle Scholar
  65. Karagiannidis, G., N. Sagias, et al. (2006). “Closed-form statistics for the sum of squared Nakagami-m variates and its applications.” Communications, IEEE Transactions on 54(8): 1353–1359.CrossRefGoogle Scholar
  66. Karagiannidis, G. K. et al. (2003a). “Performance analysis of triple selection diversity over exponentially correlated Nakagami- m fading channels,” Communications, IEEE Transactions on 51(8):1245–1248.CrossRefGoogle Scholar
  67. Karagiannidis, G. K. et al. (2003b). “On the multivariate Nakagami-m distribution with exponential correlation,” Communications, IEEE Transactions on 51(8):1240–1244.CrossRefGoogle Scholar
  68. Karagiannidis, G. K. et al. (2007). “N*Nakagami: A novel statistical model for cascaded fading channels,” Communications, IEEE Transactions on 55(8) 1453–145.MathSciNetCrossRefGoogle Scholar
  69. Karmeshu, J. and R. Agrawal (2007). “On efficacy of Rayleigh-inverse Gaussian distribution over K-distribution for wireless fading channels.” Wireless Communications & Mobile Computing 7(1): 1–7.CrossRefGoogle Scholar
  70. Korn, I. and Foneska, J. P. (2001). “M-CPM with MRC Diversity in Rician-, Hoyt-, and Nakagami-Fading Channels,” Vehicular Technology, IEEE Transactions on 50(4) 1182–118.Google Scholar
  71. Kostic, I. M. (2005). “Analytical approach to performance analysis for channel subject to shadowing and fading.” Communications, IEE Proceedings- 152(6): 821–827.CrossRefGoogle Scholar
  72. Kotz, S. and J. Adams (1964). “Distribution of sum of identically distributed exponentially correlated gamma-variables.” The Annals of Mathematical Statistics: 277–283.Google Scholar
  73. Kundu, K. and Raqab, M. Z. (2005). “Generalized Rayleigh distribution: different methods of estimations,” Computational Statistics & Data Analysis (49) 187–200.MATHMathSciNetCrossRefGoogle Scholar
  74. Lam, C. L. J. and T. Le-Ngoc (2006). “Estimation of typical sum of lognormal random variables using log shifted gamma approximation.” Communications Letters, IEEE 10(4): 234–23.CrossRefGoogle Scholar
  75. Lam, C. L. J. and L.-N. Tho (2007). “Log-Shifted Gamma Approximation to Lognormal Sum Distributions.” Vehicular Technology, IEEE Transactions on 56(4): 2121–2129.CrossRefGoogle Scholar
  76. Laourine, A. et al. (2008). “On the capacity of generalized-K fading channels.” Wireless Communications, IEEE Transactions on 7(7): 2441–2445.CrossRefGoogle Scholar
  77. Laourine, A., et al. (2009). “On the Performance Analysis of Composite Multipath/Shadowing Channels Using the G-Distribution,” Communications, IEEE Transactions on 57(4): 1162–1170.CrossRefGoogle Scholar
  78. Lee, R. and B. Holland (1979). “Distribution of a ratio of correlated gamma random variables.” SIAM Journal on Applied Mathematics 36(2): 304–320.Google Scholar
  79. D. J. Lewinsky (1983). “Nonstationary probabilistic target and cluttering scattering models,” Aerospace Electronics and Systems, IEEE Transactions on 31: 490–49.Google Scholar
  80. Ligeti, A. (2000). “Outage probability in the presence of correlated lognormal useful and interfering components.” Communications Letters, IEEE 4(1): 15–17.CrossRefGoogle Scholar
  81. Lienhard, J. H. and Meyer, P. L. (1967). “A physical basis for the generalized gamma distribution,” Quarterly of Appl. Math. 25(3) 330–334.MATHGoogle Scholar
  82. Lindsey, W. C. and Simon M. K. (1973). Telecommunication Systems Engineering. Englewood Cliffs, N.J., Prentice-Hall.Google Scholar
  83. Liu, Z. et al. (2008). “Approximating lognormal sum distributions with power lognormal distributions.” Vehicular Technology, IEEE Transactions on 57(4): 2611–2617.CrossRefGoogle Scholar
  84. Ma, Y. and C. C. Chai (2000). “Unified error probability analysis for generalized selection combining in Nakagami fading channels.” Selected Areas in Communications, IEEE Journal on 18(11): 2198–2210.CrossRefGoogle Scholar
  85. Mathai, A. and P. Moschopoulos (1991). “On a multivariate gamma.” Journal of Multivariate Analysis 39(1): 135–153.MATHMathSciNetCrossRefGoogle Scholar
  86. Mathai, A. M. (1993). A Handbook of Generalized Special Functions for Statistical and Physical Sciences. Oxford University Press.Google Scholar
  87. Mathai, A. M. and H. J. Haubold (2008). Special functions for applied scientists. New York, Springer Science+Business Media.Google Scholar
  88. Mathai, A. M. and R. K. Saxena (1973). Generalized hypergeometric functions with applications in statistics and physical sciences. Berlin, New York, Springer.MATHGoogle Scholar
  89. McDaniel, S. T. (1990). “Seafloor reverberation fluctuations”, J. Acoust. Soc. Amer . 88(3): 1530–1535.MathSciNetCrossRefGoogle Scholar
  90. Middleton, D. (1996). An Introduction to Statistical Communications Theory. Piscataway, N. J, IEEE Press.Google Scholar
  91. Molisch, A. F. (2005). Wireless communications. Chichester, U. K. John Wiley & Sons.Google Scholar
  92. Moschopoulos, P. (1985). “The distribution of the sum of independent gamma random variables.” Annals of the Institute of Statistical Mathematics 37(1): 541–544.MATHMathSciNetCrossRefGoogle Scholar
  93. Nadarajah, S. (2005). “Products, and ratios for a bivariate gamma distribution.” Applied Mathematics and Computation 171(1): 581–595.MATHMathSciNetCrossRefGoogle Scholar
  94. Nadarajah, S. and A. Gupta (2005). “On the product and ratio of Bessel random variables.” International Journal of Mathematics and Mathematical Sciences 2005(18): 2977–2989.MATHMathSciNetCrossRefGoogle Scholar
  95. Nadarajah, S. and A. Gupta (2006a). “Some bivariate gamma distributions.” Applied Mathematics Letters 19(8): 767–774.MATHMathSciNetCrossRefGoogle Scholar
  96. Nadarajah, S. and S. Kotz (2006b). “Bivariate gamma distributions, sums and ratios.” Bulletin of the Brazilian Mathematical Society 37(2): 241–274.MATHMathSciNetCrossRefGoogle Scholar
  97. Nadarajah, S. and S. Kotz (2006). “On the product and ratio of gamma and Weibull random variables.” Econometric Theory 22(02): 338–344.MATHMathSciNetCrossRefGoogle Scholar
  98. Nadarajah, S. and S. Kotz (2007). “A class of generalized models for shadowed fading channels.” Wireless Personal Communications 43(4): 1113–1120.CrossRefGoogle Scholar
  99. Nakagami, M. (1960). The m-distribution—A general formula of intensity distribution of rapid fading, in Statistical Methods in Radio Wave Propagation, W. C. Hoffman, Ed. Elmsford, NY: Pergamon.Google Scholar
  100. Nuttall, A. (1975). “Some integrals involving the Q_M function (Corresp.).” Information Theory, IEEE Transactions on 21(1): 95–96.Google Scholar
  101. Nuttall, A. H. (1970). “Alternate forms for numerical evaluation of cumulative probability distributions directly from characteristic functions.” Proceedings of the IEEE 58(11): 1872–1873.CrossRefGoogle Scholar
  102. Nuttall, A. H. (1969). “Numerical evaluation of cumulative probability distribution functions directly from characteristic functions.” Proceedings of the IEEE 57(11): 2071–2072.CrossRefGoogle Scholar
  103. Okui, S. (1981). “Probability Distributions for Ratios of Fading Signal Envelopes and Their Generalization,” Electronics and Communications in Japan 64-B(3), 72–80.Google Scholar
  104. Panajotovic, A. S. et al. (2009). “Effect of Microdiversity and Macrodiversity on Average Bit Error Probability in Shadowed Fading Channels in the Presence of Interference.” ETRI Journal 31(5): 500–505.CrossRefGoogle Scholar
  105. Papazafeiropoulos, A. K. and S. A. Kotsopoulos (2011). “The α-λ-μ and α-μ-μ small scale general fading distributions: A unified approach,” Wireless Personal Communications 57: 735–751.CrossRefGoogle Scholar
  106. Papoulis, A. and S. U. Pillai (2002). Probability, random variables, and stochastic processes. Boston, McGraw-Hill.Google Scholar
  107. Patzold, M. (2002). Mobile Fading Channels. Chichester, U. K., John Wiley & Sons, Inc.Google Scholar
  108. Piboongungon, T. and V. A. Aalo (2004). “Outage probability of L-branch selection combining in correlated lognormal fading channels.” Electronics Letters 40(14): 886–888.CrossRefGoogle Scholar
  109. Podolski, H. (1972). “The distribution of a product of n independent random variables with generalized gamma distribution.” Demonstratio Math 4(2): 119–123.MATHMathSciNetGoogle Scholar
  110. Polydorou, D. S. et al. (1999). “Statistical characterization of fading in LOS wireless channels with a finite number of dominant paths. Application in millimeter frequencies.” International Journal of Infrared and Millimeter Waves 20(3): 461–472.CrossRefGoogle Scholar
  111. Proakis, J. G. (2001). Digital communications. Boston, McGraw-Hill.Google Scholar
  112. Provost, S. (1989). “On sums of independent gamma random variables.” STATISTICS. 20(4): 583–591.MATHMathSciNetCrossRefGoogle Scholar
  113. Rappaport, T. S. (2002). Wireless communications: principles and practice. Upper Saddle River, N.J., Prentice Hall PTR.Google Scholar
  114. Rice, S. (1974). “Probability Distributions for Noise Plus Several Sine Waves--The Problem of Computation.” Communications, IEEE Transactions on 22(6): 851–853.CrossRefGoogle Scholar
  115. Rohatgi, V. K. and A. K. M. E. Saleh (2001). An introduction to probability and statistics. New York, Wiley.MATHGoogle Scholar
  116. Saleh, A. & Valenzuela R. A. (1987) “A statistical model for indoor multipath propagation” Selected Areas in Communications, IEEE Journal on 5: 128–137.Google Scholar
  117. Sahu, P. R. & Chaturvedi, A. K. (2005), “Performance analysis of predetection EGC receiver in Weibull fading channel,” Electr. Lett. 41(2) 85–86.CrossRefGoogle Scholar
  118. Salo, J. et al. (2006). “The distribution of the product of independent Rayleigh random variables.” Antennas and Propagation, IEEE Transactions on 54(2): 639–643.MathSciNetCrossRefGoogle Scholar
  119. Schwartz, M. (1980). Information transmission, modulation, and noise: a unified approach to communication systems. New York, McGraw-Hill.Google Scholar
  120. Schwartz, M. et al. (1996). Communication Systems and Techniques. Piscataway, NJ., IEEE Press.Google Scholar
  121. Shah, A. et al. (2000). “Exact bit-error probability for optimum combining with a Rayleigh fading Gaussian cochannel interferer.” Communications, IEEE Transactions on 48(6): 908–912.CrossRefGoogle Scholar
  122. Shankar, P. (2002a). Introduction to wireless systems, Wiley New York.Google Scholar
  123. Shankar, P. (2002b). “Ultrasonic tissue characterization using a generalized Nakagami model.” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 48(6): 1716–1720.CrossRefGoogle Scholar
  124. Shankar, P. M. (2004). “Error rates in generalized shadowed fading channels.” Wireless Personal Communications 28(3): 233–238.CrossRefGoogle Scholar
  125. Shankar, P. M. (2005). “Outage probabilities in shadowed fading channels using a compound statistical model.” Communications, IEE Proceedings on 152(6): 828–832.CrossRefGoogle Scholar
  126. Shankar, P. M. and Gentile, C. (2010). Statistical Analysis of Short Term Fading and Shadowing in Ultra-Wideband Systems. Communications (ICC), 2010 IEEE International Conference on.Google Scholar
  127. Shankar, P. M. (2010). “Statistical Models for Fading and Shadowed Fading Channels in Wireless Systems: A Pedagogical Perspective,” Wireless Personal Communications. DOI: 10.1007/s11277-010-9938-2
  128. Shanmugam, K. S. (1979). Digital and analog communication systems. New York, Wiley.Google Scholar
  129. Shepherd, N. H. (1977). “Radio wave loss deviation and shadow loss at 900 MHZ,” Vehicular Technology, IEEE Transactions on 26(4) 309–313.Google Scholar
  130. Shin, J. et al. (2005). “Statistical modeling of speech signals based on generalized gamma distribution.” Signal Processing Letters, IEEE 12(3): 258–261.CrossRefGoogle Scholar
  131. Sijing, J. and N. C. Beaulieu (2010). BER of antipodal signaling in Laplace noise., 2010 25th Biennial Symposium on Communications (QBSC).Google Scholar
  132. Simon, M. (2002). “The Nuttall Q function-its relation to the Marcum Q function and its application in digital communication performance evaluation.” Communications, IEEE Transactions on 50(11): 1712–1715.CrossRefGoogle Scholar
  133. Simon, M. et al. (1995). Digital communication techniques: signal design and detection, Prentice Hall PTR.Google Scholar
  134. Simon, M. K. and M. S. Alouini (2003). “Some new results for integrals involving the generalized Marcum Q function and their application to performance evaluation over fading channels.” Wireless Communications, IEEE Transactions on 2(4): 611–615.CrossRefGoogle Scholar
  135. Simon, M. K. and M.-S. Alouini (2005). Digital communication over fading channels. Hoboken, N.J., Wiley-Interscience.Google Scholar
  136. Sklar, B. (1997a). “Rayleigh fading channels in mobile digital communication systems. I. Characterization.” Communications Magazine, IEEE 35(7): 90–100.Google Scholar
  137. Sklar, B. (1997b). “Rayleigh fading channels in mobile digital communication systems. II. Mitigation.” Communications Magazine, IEEE 35(7): 102–109.Google Scholar
  138. Sklar, B. (2001). Digital communications: fundamentals and applications. Upper Saddle River, N.J., Prentice-Hall PTR.Google Scholar
  139. Slimane, B. (2001). “Bounds on the distribution of a sum of independent lognormal random variables.” Communications, IEEE Transactions on 49(6): 975–978.MATHCrossRefGoogle Scholar
  140. Sowerby, K. W. and A. G. Williamson (1987). “Outage probability calculations for a mobile radio system having two log-normal interferers.” Electronics Letters 23(25): 1345–1346.CrossRefGoogle Scholar
  141. Springer, M. and W. Thompson (1966). “The distribution of products of independent random variables.” SIAM Journal on Applied Mathematics 14(3): 511–526.MATHMathSciNetCrossRefGoogle Scholar
  142. Springer, M. and W. Thompson (1970). “The distribution of products of beta, gamma and Gaussian random variables.” SIAM Journal on Applied Mathematics 18(4): 721–737.MATHMathSciNetCrossRefGoogle Scholar
  143. Stacy, E. (1962). “A generalization of the gamma distribution.” The Annals of Mathematical Statistics 33(3): 1187–1192.MATHMathSciNetCrossRefGoogle Scholar
  144. Stacy, E. and G. Mihram (1965). “Parameter estimation for a generalized gamma distribution.” Technometrics 7(3): 349–358.MATHMathSciNetCrossRefGoogle Scholar
  145. Steele, R. and L. Hanzó (1999). Mobile radio communications: second and third generation cellular and WATM systems. Chichester, England; New York, John Wiley & Sons, Inc.Google Scholar
  146. Stuart, A. (1962). “Gamma-distributed products of independent random variables.” Biometrika 49(3–4): 564.MATHMathSciNetGoogle Scholar
  147. Stuber, G. L. (2000). Principles of mobile communication. New York, Kluwer Academic.Google Scholar
  148. Subadar, R. & Sahu, P. R. (2009). “Performance Analysis of Dual MRC Receiver in Correlated Hoyt Fading Channels,” Communications Letters, IEEE 13(6) 405–407.Google Scholar
  149. Suzuki, H. (1977). “A statistical model for urban radio propagation”, Communications, IEEE Transactions on 25: 673–680.CrossRefGoogle Scholar
  150. Tan, C. C. & Beaulieu, N. C. (1997). “Infinite Series Representations of the Bivariate Rayleigh and Nakagami- Distributions,” Communications, IEEE Transactions on 45(10), 1159–1161.CrossRefGoogle Scholar
  151. Taub, H. & D. L. Schilling (1986). Principles of communication systems. New York, McGraw-Hill.Google Scholar
  152. Tellambura, C. and A. Annamalai (1999). “An unified numerical approach for computing the outage probability for mobile radio systems.” Communications Letters, IEEE 3(4): 97–99.CrossRefGoogle Scholar
  153. Tellambura, C. and A. Annamalai (2000). “Efficient computation of erfc(x) for large arguments.” Communications, IEEE Transactions on 48(4): 529–532.MATHCrossRefGoogle Scholar
  154. Tellambura, C. and A. Annamalai (2003). Unified performance bounds for generalized selection diversity combining in fading channels. Wireless Communications and Networking (WCNC), 2003 IEEE.Google Scholar
  155. Tellambura, C. et al. (2003). “Closed form and infinite series solutions for the MGF of a dual-diversity selection combiner output in bivariate Nakagami fading.” Communications, IEEE Transactions on 51(4): 539–542.CrossRefGoogle Scholar
  156. Tjhung, T. T. and C. C. Chai (1999). “Fade statistics in Nakagami-lognormal channels.” Communications, IEEE Transactions on 47(12): 1769–1772.CrossRefGoogle Scholar
  157. Vaughn, R. A., J. B. Anderson, (2003). Channels, propagation and Antennas for Mobile Communications. Herts, U. K., IEE.CrossRefGoogle Scholar
  158. Van Trees, H. L. (1968) Detection, estimation, and modulation theory. Part I. New York: John Wiley and Sons.MATHGoogle Scholar
  159. V.Gh. Voda, B. (2009). “A method constructing density functions: the case for a Generalized Rayleigh variable,” Applications of Mathematics 54(5) 417–43.Google Scholar
  160. Vatalaro, F. (1995). “Generalised Rice-lognormal channel model for wireless communications.” Electronics Letters 31(22): 1899–1900.CrossRefGoogle Scholar
  161. Winters, J. (1987). “Optimum Combining for Indoor Radio Systems with Multiple Users.” Communications, IEEE Transactions on 35(11): 1222–1230.CrossRefGoogle Scholar
  162. Winters, J. H. (1984). “Optimum combining in digital mobile radio with cochannel interference.” Vehicular Technology, IEEE Transactions on 33(3): 144–155.MathSciNetCrossRefGoogle Scholar
  163. Winters, J. H. (1998). “The diversity gain of transmit diversity in wireless systems with Rayleigh fading.” Vehicular Technology, IEEE Transactions on 47(1): 119–123.MathSciNetCrossRefGoogle Scholar
  164. Withers, C. and S. Nadarajah (2008). “MGFs for Rayleigh Random Variables.” Wireless Personal Communications 46(4): 463–468.CrossRefGoogle Scholar
  165. Wolfram (2011) http://functions.wolfram.com/, Wolfram Research, Inc.
  166. Wongtrairat, W. and P. Supnithi (2009). “Performance of Digital Modulation in Double Nakagami-m Fading Channels with MRC Diversity.” Communications, IEICE Transactions on E92b(2): 559–566.Google Scholar
  167. Yacoub, M. D. (2000). “Fading distributions and co-channel interference in wireless systems.” Antennas and Propagation Magazine, IEEE 42(1): 150–160.CrossRefGoogle Scholar
  168. Yacoub, M. D. (2007a). “The α-μ Distribution: A Physical Fading Model for the Stacy Distribution.” Vehicular Technology, IEEE Transactions on 56(1): 27–34.CrossRefGoogle Scholar
  169. Yacoub, M. D. (2007b). “The μ-μ distribution and the η-μ distribution.” Antennas and Propagation Magazine, IEEE 49(1): 68–81.CrossRefGoogle Scholar
  170. Yue, S. et al. (2001). “A review of bivariate gamma distributions for hydrological applications,” J. Hydrology 246: 1–18.CrossRefGoogle Scholar
  171. Zogas, D. and Karagiannidis, G. K. (2005). “Infinite-Series Representations Associated With the Bivariate Rician Distribution and Their Applications,” Communications, IEEE Transactions on 53(11): 1790–179.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Electrical and Computer EngineeringDrexel UniversityPhiladelphiaUSA

Personalised recommendations