Skip to main content

Brassicas

  • Chapter
  • First Online:
  • 2140 Accesses

Abstract

Oleiferous brassicas are interesting breeding material since they have a complete range of breeding systems ranging from complete range of cross-pollination to self-pollination. Besides improvement in production and productivity of various economically important brassicas, improvement in the nutritional profile of their oil and defatted meal, and development of traits like herbicide tolerance, male sterility, disease and insect-pest resistance, and development of hybrid cultivars remain the prime objectives for their genetic improvement. To achieve these goals, conventional breeding efforts in conjunction with modern biotechnological tools such as molecular marker-assisted selection, doubled haploidy breeding, in vitro mutagenesis, and transgenic technology offer a great promise. The doubled haploidy (DH) technology in combination with other biotechnological and conventional breeding tools has resulted in improvements in many yield and quality attributes in Brassicaceae. Interspecific and even intergeneric hybridizations have greatly helped in generating additional variability through the recovery of distant hybrids. Further, in vitro technologies such as microspore culture, and embryo and ovary rescue coupled with in vitro mutagenesis can also generate additional selection avenues by creating variability through gemetoclonal and somaclonal variation. This review focuses on breeding methods, which individually or in combination could be deployed for solving the pressing problems of male sterility and fertility restoration mechanisms for hybrid seed production in crop brassicas, their crossability improvement and generation of variability and quality improvement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aberg E (1984) Results from the scientific cooperation between Indian and Swedish institution regarding the use of cruciferous oilcrops. Sveriges, Lantbruka suneversitet Swedish Uni Agric Sci Dep Plant Husb Rep 137 Uppsala

    Google Scholar 

  • Agnihotri A, Kaushik N (1998) Transgressive segregation and selection of zero erucic acid strains from intergeneric crosses of Brassica. Ind J Plant Genet Res 11(2):251–255

    Google Scholar 

  • Agnihotri A, Kaushik N (1999a) Genetic enhancement for double low characteristics in Indian rapeseed mustard. In: Proceedings of 10th International Rapeseed Congress, 26–29 September 1999, Canberra, Australia

    Google Scholar 

  • Agnihotri A, Kaushik N (1999b) Transfer of double low characteristics in Indian B.napus. J Oilseeds Res 16:227–229

    Google Scholar 

  • Agnihotri A, Kaushik N (2003a) Towards nutritional quality improvement in Indian mustard (Brassica juncea [L]. Czern and Coss) var. Pusa Bold. In: Sorensen H, Sorensen JC, Sorensen S, Muguerza NB, Bjergegaard C et al (eds) Proceedings of 11th International Rapeseed Congress, Copenhagen, Denmark 2: 501–503. The Royal Veterinary and Agricultural University, Copenhagen, Denmark, 6–10th July

    Google Scholar 

  • Agnihotri A, Kaushik N (2003b) Combining canola quality, early maturity and shattering tolerance in B. napus for Indian growing conditions. In: Sorensen H, Sorensen JC, Sorensen S, Muguerza NB, Bjergegaard C et al (eds) Proceedings of 11th International Rapeseed Congress, Copenhagen, Denmark 2: 436–439. The Royal Veterinary and Agricultural University, Copenhagen, Denmark, 6–10th July

    Google Scholar 

  • Agnihotri A, Lakshmikumaran M, Shivanna KR, Jagannathan V (1990a) Embryo rescue of interspecific hybrids of Brassica spinescens x B. campestris and DNA analysis. Current Plant science and Biotechnology Agriculture. Prog Plant Cell Mol Biol 1990:270–274

    Google Scholar 

  • Agnihotri A, Gupta V, Lakhmikumaran M, Shivanna KR, Prakash S, Jagannathan V (1990b) Production of Eruca-Brassica hybrids by embryo rescue. Plant Breed 104:281–289

    Google Scholar 

  • Agnihotri A, Shivanna KR, Raina SN, Lakshmikumaran M, Prakash S, Jagannathan V (1990c) Production of Brassica napus Raphanobrassica hybrids by embryo rescue. Plant Breed 105:292–299

    Google Scholar 

  • Agnihotri A, Shivanna KR, Raina SN, Lakshmikumaran M, Prakash S, Jagannathan V (1990c) Production of Brassica napus x Raphanobrassica hybrids by embryo rescue. Plant Breed 105:292–299

    Google Scholar 

  • Agnihotri A, Prem D, Gupta K (2007) The chronicles of oil and meal quality improvement in rapeseed, pp 50–99. In: Gupta SK (ed) Advances in botanical research-rapeseed breeding. Academic Press/Elsevier, San Diego, p 554

    Google Scholar 

  • Agnihotri A, Raney JP, Kaushik N, Singh NK, Downey RK (1995) Selection for better agronomical and nutritional characteristics in Indian rapeseed-mustard. In: Proceedings 9th International Rapeseed Congress, 4–7 July, Cambridge, UK, vol 2, pp 425–427

    Google Scholar 

  • Agrawal BL (1976) Studies on Genetic Diversity and Heterosis in Rapeseed (Brassica Campestris). Unpublished Ph. D. Thesis, GBPUAT, Pantnagar, India

    Google Scholar 

  • Ahmad I, Day JP, MacDonald MV, Ingram DS (1991) Haploid culture and UV mutagenesis in rapid cycling Brassica napus for the generation of resistance to chlorsulfuron and Alternaria Brassicola. Ann Bot 67:521–525

    Google Scholar 

  • Anand IJ, Singh JN, Khanna PP (1975) Inter relationship and diversity in yellow sarson (Brassica campestris var. Sarson Prain). Ind J Agric Sci 45:252–258

    Google Scholar 

  • Anonymous PP (1999) Breeding and quality analysis of rapeseed. Agtrans Research, Peter Chudleigh Toowong, Brisbane, China

    Google Scholar 

  • Appelquist LA, Ohlson R (1972) Rapeseed: cultivation, composition, processing and utilization. Elsevier, Amsterdam

    Google Scholar 

  • Ayotte R, Harney PM, Machado VS (1986) The transfer of triazine resistance from B. napus to B. oleracea. Cruciferae Newslett 11:95–96

    Google Scholar 

  • Ayotte R, Harney PM, Machado VS (1987) Transfer of triazine resistance from Brassica napus to B. oleraccea. I. Production of F1 hybrids through embryo rescue. Euphytica 36:615–624

    Google Scholar 

  • Bailey LH (1922) The cultivated Brassicas I. Gentes Herbarum 1:53–108

    Google Scholar 

  • Bannerot H, Boulidar L, Canderon Y, Tompe J (1974) Transfer of cytoplasmicmale sterility from Raphanus sativus to B. oleracea. Proceedings of Eucarpia meeting on Cruciferae. Crop Sci 25:52–54

    Google Scholar 

  • Bannerot H, Boulidar L, Chupeau Y (1977) Unexpected difficulties met with the radish cytoplasm in B. oleracea. Cruciferae Newslett 2:16

    Google Scholar 

  • Bansal UK, Sequin Swartz G, Rakow GFW, Petrie GA (1990) Reaction of Brassica species to infestation by Alternaria brassicae. Can J Plant Sci 70:1159–1162

    Google Scholar 

  • Barfield DG, Pua EC (1991) Gene transfer in plants of Brassica juncea using Agrobacterium tumefaciens mediated transformation. Plant Cell Rep 10:308–314

    CAS  Google Scholar 

  • Barro F, Fernandez-Escobar J, De La Vega M, Martin A (2001) Doubled haploid lines of Brassica carinata with modified erucic acid content through mutagenesis by EMS treatment of isolated microsporas. Plant Breed 120:262–264

    CAS  Google Scholar 

  • Barro F, Fernandez-Escobar J, De La Vega M, Martin A (2002) Modification of glucosinolate and erucic in doubled haploid lines of Brassica carinata by UV treatment of isolated microspores. Euphytica 129:1–6

    CAS  Google Scholar 

  • Bartkowiak-Broda I, Mikolajczyk K, Spasibionek S, Cegielska-Taras T (2005) Genetic and breeding research timing At increasing the value of rapeseed oil as a source of renewable energy. In: Jezowski S, Wojciechowicz KM, Zenkteler E (eds) Alternative plants for sustainable agriculture. Institute of Plant Genetics PAS, Poland, pp 129–139

    Google Scholar 

  • Bateman AJ (1955) Self incompatibility system in angiosperms III. Cruciferae Heredity 9:53–68

    Google Scholar 

  • Beckman C (2005) Vegetable oils: competition in a changing market. Bi-weeklyBulletin. Agriculture and Agri-Food Canada 18(11), Available at http://www.agr.gc.ca/mad-dam/e/bulletine/v18e/v18n11_e.htm

  • Beversdorf WD, Kott LS (1987) Development of triazine resistance in cropsby classical plant breeding. Weed Sci 35:9–11

    CAS  Google Scholar 

  • Beversdorf WD, WeissLerman J, Erickson LR, SouzaMachado V (1980) Transfer of cytoplasmically inherited triazine resistance from bird rape to cultivated oilseed rape (Brassica Campestris L. and B. napus L.). Can J Genet Cytol 22:167–172

    CAS  Google Scholar 

  • Beversdorf WD, WeissLerman J, Erickson LR, SouzaMachado V (1980) Transfer of cytoplasmically inherited triazine resistance from bird rape to cultivated oilseed rape (Brassica Campestris L. and B. napus L.). Can J Genet Cytol 22:167–172

    CAS  Google Scholar 

  • Boswell VR (1949) Our vegetable travelers. Natl Geogr Mag 96:45–217

    Google Scholar 

  • Brazezinski W, Mendelewski P, Munse BG (1986) Comparative study on determination of glucosinolates in rapeseed. Cruciferae Newslett 11:128–129

    Google Scholar 

  • Brim H, Plessi J, Renard M (1987) Resistance of some crucifers to Alternariabrassicae (Berk.) Saacc. In: Proceedings of the 7th Rapeseed Conference, Paris, pp 1222–1227

    Google Scholar 

  • Burton W, Salisbury P, Potts D (2003b) The potential of canola quality Brassica juncea as an oilseed crop for Australia In: Proceedings of the 11th Rapeseed Conference, pp 5–7. The Royal Veterinary and Agricultural University, Copenhagen, Denmark, 6–10th July

    Google Scholar 

  • Cardoza V, Stewart NC Jr (2004) Brassica biotechnology progress in cellular and molecular biology. In Vitro Cell Dev Biol Plant 40:542–551

    CAS  Google Scholar 

  • Carre P, Dartenuc C, Evrard J, Judde A, Labalette F, Raoux R, Renard M (2003) Frying stability of rapeseed oils with modified fattyacid composition. In: Proceedings of 11th International Rapeseed Congress, vol. 2, pp 540–543. The Royal Veterinary and Agricultural University, Copenhagen, Denmark, 6–10th July

    Google Scholar 

  • Cegielska-Taras T, Szala L, Krzymanski J (1999) An in vitro mutagenesis-sleection system for Brassica napus L. New Horizons for an Old Crop. In: Proceedings of the 10th International Rapeseed Congress, Canberra, Australia, pp 1–4

    Google Scholar 

  • Charne DG, Beversdorf WD (1988) Improving microspore culture as a rapeseed breeding tool: the use of auxins and cytokinins in an induction medium. Can J Bot 66:1671–1675

    CAS  Google Scholar 

  • Chaubey CN (1979) Mass selection in toria. Ind J Genet 39:194–201

    Google Scholar 

  • Chevre AM, Eber F, Brun H, Plessis J, Primard C, Renard M (1991) Cytogenetic studies of Brassica napus-Sinapsis alba hybrids from ovary culture and protoplast fusion. Attempts to introduce Alternaria resistanceinto rapeseed. Proc Int Rapeseed Conf 8:346–351

    Google Scholar 

  • Chiang MS (1974) Cabbage pollen germination and longevity. Euphytica 23:579–584

    Google Scholar 

  • Chiang MS, Crete R (1983) Transfer of resistance to Race 2 of Plasmodiophorabrassicae from B. napus to cabbage (B. oleracea var. capitata) the inheritance of resistance. Euphytica 32:479–483

    Google Scholar 

  • Chaudhary S, Parmenter DL, Moleney MM (1998) Transgenic Brassica carinata as a vehicle for the production of recombinant proteins in seeds. Plant Cell Rep 17:195–200

    Google Scholar 

  • Corbett P, Sernyk L (2003) Global opportunites for naturally stable canola/rapeseed oils. In: Proceedings of 11th International Rapeseed Congress, vol. 2, pp 524–527. The Royal Veterinary and Agricultural University, Copenhagen, Denmark, 6–10th July

    Google Scholar 

  • Craig BM, Murphy NL (1959) Quantitative fatty acid analysis of vegetableoil by gas liquid chromatography. J Am Oil Chem Soc 36:549–552

    Google Scholar 

  • Das B, Rai B (1972) Heterosis in intervarietal crosses of toria. Ind J Genet 32:197–202

    Google Scholar 

  • De Block M, De Brower D, Tenning P (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of bar and neo genes in the transgenic plants. Plant Physiol 91:694–701

    PubMed  Google Scholar 

  • Doloi PC (1977) Levels of self-incompatibility, heterosis and inbreeding depression in Brassica Campestris. Unpublished Ph.D. Thesis, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Nainital, India

    Google Scholar 

  • Downey RK (1964) A selection of Brassica campestris L. containing no erucic acid in its seed oil. Can J Plant Sci 44:295

    CAS  Google Scholar 

  • Downey RK, Harvey BL (1963) Method of breeding for oil quality in rape. Can J Plant Sci 43:271–275

    CAS  Google Scholar 

  • Downey RK, Rakow G (1987) Rapeseed and mustard. In: Fehr WR (ed) Principles of cultivar development, vol. 2, Crop species. Macmillan, New York, pp 437–486

    Google Scholar 

  • Downey RK, Rimmer SR (1993) Agronomic improvement in oilseedBrassicas. Adv Agronomy 50:1–66

    Google Scholar 

  • Downey RK, Robellen G (1989) Brassica species. In: Robellen G, Downey RK, Ashri A (eds) Oil Crops of the world. McGraw Hill, New York, pp 339–362

    Google Scholar 

  • Downey RK, Klassen AJ, Stringam GR (1980) Rapeseed and mustard. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. American Society of Agronomy Inc, Madison, pp 495–509

    Google Scholar 

  • Dueck J, Degenhardt K (1975) Effect of leaf age and inoculum concentration on reaction of oilseed Brassica species to Alternaria brassicae. In: Proceedings of the American Phytopathological Society 2, 168 (Abstract)

    Google Scholar 

  • Dunwell JM (1996) Microspore culture. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 1. Kluwer Academic, Dordrecht, pp 205–216

    Google Scholar 

  • Facciola S (1990) Cornucopia. A source of edible plants, 1st edn. Kampong Publication, Vista California, p 678 p

    Google Scholar 

  • Facciotti MT, Bertain PB, Yuan L (1999) Improved stearate phenotype in transgenic canola expressing a modified acyl-acyl carrier protein thioesterase. Nat Biotechnol 17:593–597

    PubMed  CAS  Google Scholar 

  • Fan Z, Tai W (1985) A cytogenetic studies of monosomics in Brassica napus. Can J Genet Cytol 27:683–688

    Google Scholar 

  • Fan Z, Rimmer SR, Stefansson BR (1983a) Inheritance of resistance to Albugo candida in rapid cycling population of Brassica campestris. Phytopathol 77:527–532

    Google Scholar 

  • Fan Z, Rimmer SR, Stefansson BR (1983b) Inheritance of resistance to Albugo candida in rape. Can J Genet Cyotol 25:420–424

    Google Scholar 

  • Fenwick GR, Heaney RK, Mullim WJ (1983) Glucosinolates and theirbreakdown products in food and food plants. CRC Crit Rev Food Sci Nutr 18:123–201

    CAS  Google Scholar 

  • Ferrie AMR, Keller WA (2002) Application of double haploidy and mutagenesis in Brassica. 13th Crucifere Genetics Workshop, March 23–26, University of California, Davis

    Google Scholar 

  • Frandsen KJ (1943) The experimental formation of Brassica juncea (Czern andCoss). Dansk Botanisk Arkiv 11:1–17

    Google Scholar 

  • Frandsen KJ (1947) The experimental formation of Brassica napus L. va. Oleifera DC. and Brassica carinata Braun. Dansk Bot. Arkiv 12:1–16

    Google Scholar 

  • Fussel GE (1955) History of cole (Brassica sp). Nature 176, 48–51 glucosinolate in rapeseed. Can J Plant Sci 55:191–196

    Google Scholar 

  • Gororo N, Salisbury P, Rebetzke G, Burton W, Bell C (2003) Genotypic variation for saturated fatty acid content of victorian canola. In: Proceedings of 11th International Rapeseed Congress, vol. 1, pp 215–217. The Royal Veterinary and Agricultural University, Copenhagen, Denmark, 6–10th July

    Google Scholar 

  • Grant I, Beversdorf WD (1985) Heterosis and combining ability estimates inspring planted rape (Brassica napus). Can J Genet Cytol 27:472–478

    Google Scholar 

  • Gu HH, Hagberg P, Zhou WJ (2003) Cold pretreatment enhances microspore embryogenesis in oilseed rape (Brassica napus L.). Plant Growth Regul 2004(42):137–143

    Google Scholar 

  • Gu HH, Zhou WJ, Hagberg P (2004) High frequency spontaneous production of doubled haploid plants in microspore cultures of Brassica rapa ssp. chinensis. Euphytica 134:239–245

    Google Scholar 

  • Gupta ML, Banga SK, Banga SS, Sandha GS, Ahuja KL, Raheja RK (1994) A new genetic stock for low erucic acid in Indian Mustard. Cruciferae Newslett 16:104–105

    Google Scholar 

  • Gupta ML, Ahuja KL, Raheja RK, Labana KS (1998) Variation for biochemical quality traits in promising genotypes of Indian mustard. J Res 25:1–5

    Google Scholar 

  • Gupta SK, Pratap A (2007) History, origin and evolution. In: Gupta SK (ed) Advances in Botanical Research-Rapeseed Breeding, Vol. 45, Academic Press, London, pp 1–20

    Google Scholar 

  • Gupta SK, Pratap A (2008) Recent trends in oilseed Brassicas. In: Nayyar H (ed) Crop Improvement: Challenges and Strategies. I.K. International, New Delhi, India, pp 284–299

    Google Scholar 

  • Gupta V, Sita GL, Shaila MS, Jagannathan V (1993) Genetic transformation in Brassica nigra by Agrobacterium based vector and direct plasmid uptake. Plant Cell Rep 12:418–421

    Google Scholar 

  • Halfhill MD, Richards HA, Mabon SA, Stewart NC Jr (2001) Expression of GFP and Bt transgenes in Brassica napus and hybridization with Brassica rapa. Theor Appl Genet 103:151–156

    Google Scholar 

  • Hawkins D, Kridl L (1998) Characterization of acyl-ACP thioesterase of mangosteen (Garcinia mangosteena) seed and high levels of state production in transgenic canola. Plant J 13:743–752

    PubMed  CAS  Google Scholar 

  • He YH, Yang RF, Luo SQ (1987) Selection of Swede rape cultivar 821 withhigh potential and multiple resistance: Study of characteristic structures. OilCrops China 2:11–15

    Google Scholar 

  • Hinata K, Konno N (1979) Studies on male sterile strain having the Brassica campestris nucleus and the Diplotaxis muralis cytoplasm. I. On the breeding procedure and some characteristics of the male sterile strain. Jpn J Breed 29:305–311

    Google Scholar 

  • Hitz WD, Mauvis CJ, Ripp KG, Reiter RJ, DeBonte L, Chen Z (1995) The use of cloned rapeseed genes for the cytoplasmic fatty acid desaturases and the plastid acyl-ACP thioesterases to alter relative levels of polyunsaturated and saturated fatty acids in rapeseed. D5-Breeding Oil Quality. GCIRC 1995 Cambridge, UK, pp 470–478

    Google Scholar 

  • Hofte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    PubMed  CAS  Google Scholar 

  • Holzner W (1981) Acker-Unkra¨uter-Bestimmung, Verbreitung, Biologie undO ¨ kologie. Leopold Stocker Verlag, Graz, Stuttgart

    Google Scholar 

  • Hutchenson DS, Downey RK, Campbell SJ (1981) Performance of anaturally occurring subspecuies hybrid in B. campestris var. oleifera. Can J Plant Sci 61:895–900

    Google Scholar 

  • Ichikawa H, Hirai A (1983) Search for a female parent in the genesis of Brassica napus by chloroplast DNA restriction pattern. Jpn J Genet 58:419–424

    Google Scholar 

  • Jagannath A, Bandhopadhyay P, Arumugam N, Burma PK, Pental D (2001) The use of a spacer DNA fragment insulates the tissue specific expression of a cytotoxic gene (barnase) and allows high frequency generation of transgenic male sterile lines in Brassica juncea L. Mol Breed 8:11–12

    CAS  Google Scholar 

  • Jagannath A, Arumugam N, Guipta V, Pradhan A, Burma PK, Pental D (2002) Development of transgenic barstar lines and identification of a male sterile (barnase/restorer (barstar) combination for heterosis breeding in Indian oilseed mustard (Brassica juncea). Curr Sci 82:46–52

    CAS  Google Scholar 

  • James C (2007) Global status of commercialized biotech/GM crops: 2007, ISAAA Brief No. 37., Executive Summary, International Service for the Acquisition of Agribiotech Applications (ISAAA), New York

    Google Scholar 

  • Jedrzejaszek K, Kruczkowska H, Pawlowska H, Skucinska B (1997) Simulating effect of mutagens on in vitro plant regeneration. MBNL 43:10–11

    Google Scholar 

  • Jonsson (1973) Breeding for low erucic acid contents in summer turnip rape (Brassica campestris L. var. annua) Z. Pflan Zen Zu Chtz. 69:1–18

    Google Scholar 

  • Kalia HR, Gupta SK (1997) Importance, nomenclature and origin. In: Kalia HR, Gupta SK (eds) Recent advances in oilseed brassicas. Kalyani Publishers, New Delhi, pp 1–11

    Google Scholar 

  • Keller WA, Armstrong KC (1978) High frequency production of microspore derived plants from Brassica napus another cultures. Z. Pflanzenzchtg 80:100–108

    Google Scholar 

  • Kirk JTO, Oram RN (1981) Isolation of erucic acid free lines of Brassica juncea: Indian mustard now a potential oilseed crop in Australia. J Australian Inst Agric Sci 47:51–52

    Google Scholar 

  • Khalatkar AS, Rakow G, Downey RK (1991) Selection for quality and disease resistance in Brassica juncea cv. Pusa Bold. In: Proceedings 8th International Rapeseed Congress Saskatoon, Canada, 9–11 July, pp 198

    Google Scholar 

  • Knutzon DS, Hayes TR, Wyrick A, Xiong H, Davies HM, Voelker TA (1999) Lysophosphatidic acid acyltransferase from coconut endosperm mediates the insertion of laurate at the sn-2 position of triaglycerols in lauric rapeseed oil and can increase total laurate levels. Plant Physiol 120:739–746

    PubMed  CAS  Google Scholar 

  • Kott L (1995) Production of mutants using the rapeseed doubled haploid system. In: Induced mutations and molecular techniques for crop improvement. IAEA, Vienna, pp 505–515

    Google Scholar 

  • Kott L (1998) Application of doubled haploid technology in breeding of oilseed Brassica napus. AgBiotech News Inform 10:69N–74N

    Google Scholar 

  • Krzymanski J, Downey RK (1969) Inheritance of fatty acid composition inwinter forms of Brassica napus. Can J Plant Sci 49:313–319

    CAS  Google Scholar 

  • Labana KS, Badwal SS, Chaurasia BD (1975) Heterosis and combining ability in B. juncea. Crop Improvement 2:46–51

    Google Scholar 

  • Larik AS, Hussain M (1990) Heterosis in Indian mustard Brassica juncea (L.) Coss. Pakistan J Bot 22(2):168–171

    Google Scholar 

  • Lee SJ, Zhang Y (1983) The utilization of genetic male sterility in Brassicamale sterility in Shanghai, China. In: Proceedings of 6th International Rapeseed Congress, Paris, France, pp 360–364

    Google Scholar 

  • Lefort-Buson M, Datte Y (1982) Genetic study of some agronomic charactersin winter oilseed rape (Brassica napus). I. Heterosis. Agronomie 2:315–322

    Google Scholar 

  • Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Z. Pflanzenphysiol 103:229–237

    Google Scholar 

  • Liu JW, DeMichele S, Bergana M, Bobik E, Hastilow C, Chuong LT, Mukerji P, Huang YS (2001) Characterization of oil exhibiting high gamma-linolenic acid from a genetically transformed canola strain. J Am Oil Chem Soc 78:489–493

    CAS  Google Scholar 

  • Luhs W, Weier D, Marwede V, Frauen M, Lekband G, Becker HC, Frentzen M, Friedt W (2003) Breeding of oilseed rape (Brassica napus L.) for modified tocopherol composition- synergy of conventional and modern approaches. In: Proceedings of 11th International Rapeseed Congress, vol 1, pp 194–197. The Royal Veterinary and Agricultural University, Copenhagen, Denmark, 6–10th July

    Google Scholar 

  • MacDonald MV, Ahgmad I, Menten JOM, Ingram DS (1991) Haploid culture and in vitro mutagenesis (UV light, X-rays, and gamma rays) of rapid cycling Brassica napus for improved resistance to disease. In: Plant mutation breeding for crop improvement, vol. 2. IAEA, Vienna, pp 129–138

    Google Scholar 

  • Mahapatra D, Bajaj YPS (1987) Inter specific hybridization of B. juncea x B. hirta using embryo rescue. Euphytica 36:321–326

    Google Scholar 

  • Malode SN, Swamy RV, Khalatkar AS (1995) Introgression of ‘OO’ quality characters in Brassica juncea cv. Pusa bold. In: Proceedings 9th, International Rapeseed Congress, Cambridge, UK, 4–7 July, pp 431–438

    Google Scholar 

  • Maluszynski M, Kasha KJ, Forster BP, Szarejko I (2003) Doubled haploid production in crop plants: a manual. Kluwer Academic, Dordrecht, p 428

    Google Scholar 

  • Mathias R (1985) Transfer of mustard (Brassica juncea L.) into rapeseed (BrassicaNapus L.). Plant Breed 95:371–374

    Google Scholar 

  • Mc Collum GD (1988) CMS (ESG-508) and CMS (FSG-512) cytoplasmic male sterile cabbage germplasm with radish cytoplasm. Hort Sci 23:227–228

    Google Scholar 

  • McGregor DI, Downey RK (1975) Arapid and simple assay for identifying low glucosinolate in rapeseed. Can J Plant Sci 55:191–196

    CAS  Google Scholar 

  • McGregor DI, Mullim WJ, Fenwick GR (1983a) Review of analysis of glucosinolate analytical methodology for determining glucosinolate composition and content. J Assoc Off Anal Chem 66:825–849

    CAS  Google Scholar 

  • McGregor DI, Mullim WJ, Fenwick GR (1983b) Review of analysis of glucosinolate analytical methodology for determining glucosinolate composition and content. J Assoc Off Anal Chem 66:825–849

    CAS  Google Scholar 

  • Mehra KL (1966) History and ethnobotany of mustard in India. Advances Frontiers of Plant Science 19:51–59

    Google Scholar 

  • Moloney MM, Walker JM, Sharma KK (1989) High efficiency transformation of Brassica napus Morinaga, T. (1928). Preliminary note on interspecific hybridization in Brassica

    Google Scholar 

  • Moloney MM, Walker JM, Sharma KK (1989) High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep 8:238–242

    CAS  Google Scholar 

  • Morinaga T (1928) Preliminary note on interspecific hybridization in Brassica. Proceedings of Imperial Academy Tokyo 4:620–622

    Google Scholar 

  • Morinaga T (1929a) Interspecific hybridization in Brassica I. The cytology of F1hybrids of B. nepella and various other species with 10 chromosomes. Cytologia 1:16–27

    Google Scholar 

  • Morinaga T (1929b) Interspecific hybridization in Brassica II. The cytology of F1hybrids B. cerna and various other species with 10 chromosomes. Jpn J Bot 4:277–280

    Google Scholar 

  • Morinaga T (1934a) Interspecific hybridization in Brassica VI. The cytology of F1hybrids of B. napus and. B. nigra. Cytologia 6:62–67

    Google Scholar 

  • Morinaga T (1934b) On the chromosome number of Brassica juncea and Brassicanapus on the hybrid between these two and on offspring of the hybrid. Jpn J Genet 9:161–163

    Google Scholar 

  • Muenscher WC (1980) Weeds, 2nd edn. Cornell University Press, Ithaca, p 586

    Google Scholar 

  • Munz PA (1968) A California flora. University of California Press, Berkeley, Los Angeles, p 1681

    Google Scholar 

  • Nagalakshmi TV (1992) Analysis of genetic divergence, combining ability andheterosis in Indian mustard (B. napus). Ph. D. Thesis, BHU, Varanasi, India

    Google Scholar 

  • Narasimhulu SB, Kirti PB, Mohapatra T, Prakash S, Chopra VL (1992) Shoot regeneration in stem explants and its amenability to Agrobacterium tumefaciens mediated gene transfer in Brassica carinata. Plant Cell Rep 11:359–362

    CAS  Google Scholar 

  • Neuweiller (1905) Die prahistorishe Pflanzenreste Mitteleuropas, Zurich

    Google Scholar 

  • Ogura H (1968) Studies on a new male-sterility in Japanese radish, with special reference to utilization of this sterility towards the practical raising of hybrid seeds. Mem Fac Agr Kogoshima Univ 6:39–78

    Google Scholar 

  • Oliveri AM, Parrini P (1986) Relationship between glucosinolate content andyield component in rapeseed. Cruciferae Newslett 11:126–127

    Google Scholar 

  • Olsson G (1954) Crosses within the campestris group of the genus Brassica. Hereditas 40:398–418

    Google Scholar 

  • Olsson G (1990) Rape yield. Production components. Svensk Frotidning 59:168–169

    Google Scholar 

  • Oram RN, Salisbury PA, Krick JTO, Burton WA (1999) Development of early flowering, canola grade Brassica juncea germplasm. In: Proceedings of 10th International Rapeseed Congress, 26–29 September, Canberra, Australia

    Google Scholar 

  • Persson C (1986) High erucic acid from white mustard (Sinapis alba) for technicaluse. Cruciferae Newslett 11:134

    Google Scholar 

  • Pidskalny RS, Rimmer SR (1985) Virulence of Albugo candida from turniprape (Brassica campestris) and mustard (B. napus) on various crucifers. Can J Plant Pathol 7:283–286

    Google Scholar 

  • Piggot S (1950) Prehistoric India to 1000 BC. Penguin Books, Harmondsworth

    Google Scholar 

  • Pilgeram AL, Sanda DC, Boss D, Dale N, Wichman D, Lamb P, Lu C, Barrows R, Kirkpatrick M, Thompson B, Johnson DL (2007) Camelina sativa, a montana omega-3- and fuel crop. In: Janick J, Whipkey A (eds) Issues in new crops and new uses. ASHS Press, Alexandria, VA, pp 129–131

    Google Scholar 

  • Polsoni L, Kott LS, Beversdorf WD (1988) Large-scale microspore culture technique for mutation-selection studies in Brassica napus. Can J Bot 66:1681–1685

    Google Scholar 

  • Potts DA, Rakow GW, Males DR (1999) Canola-quality Brassica juncea, a new oilseed crop for the Canadian prairies. In: Proceedings of Xth GCIRC International Rapeseed Congress, 26–29 September, Canberra, Australia

    Google Scholar 

  • Pradhan AK, Sodhi YS, Mukhopadhyay A, Pental D (1993) Heterosis breeding in Indian mustard (Brassica juncea L. Czern & Coss): Analysis of component characters contributing to heterosis for yield. Euphytica 69:219–229

    Google Scholar 

  • Prakash S (1973) Artificial Brassica juncea coss. Genetica 44:249–263

    Google Scholar 

  • Prakash S (1980) Cruciferous oilseeds in India. In: Tsunoda S, Hinata K, Gomez Campo C (eds) Brassica crops and wild allies. Biology and breeding. Japan Scientific Society Press, Tokyo, pp 151–163

    Google Scholar 

  • Prakash S, Chopra VL (1988) Introgression of resistance to shattering in Brassica napus from Brassica juncea through non-homologous recombination. Plant Breed 101:167–168

    Google Scholar 

  • Prakash S, Chopra VL (1988b) Introgression of resistance to shattering in Brassica napus from Brassica juncea through non-homologus recombination. Plant Breed 101:167–168

    Google Scholar 

  • Prakash S, Chopra VL (1991) Cytogenetics of crop brassicas and their allies. In: Chromosomal engineering in plants: genetics, breeding and evolution, Part B. Elsevier, Amsterdam, pp 19–61

    Google Scholar 

  • Prakash S, Hinata K (1980) Taxonomy, cytogenetics and origin of cropBrassica, a review. Opera Botanica 55:11–57

    Google Scholar 

  • Prakash S, Raut RN (1983) Artificial synthesis of Brassica napus and its prospects as an oilseed crop in India. Ind J Genet 42:282–290

    Google Scholar 

  • Prakash S, Kirti PB, Bhat SR, Gaikwad K, Dineshkumar V, Chopra VL (1998) A Moricandia arvensis based cytoplasmic male sterility and fertility restoration system in Brassica juncea. Theor Appl Genet 97:488–492

    CAS  Google Scholar 

  • Prasad KVSK, Sharmila P, Kumar PA, Saradhi PP (2000) Transformation of Brassica juncea (L.) Czern with bacterial coda gene enhances its tolerance to salt and cold stress. Mol Breed 6:489–499

    CAS  Google Scholar 

  • Pratap A, Gupta SK (2007) Unusual floral morphology in advanced generations of intergeneric hybrids between Brassica napus and Eruca sativa. ISOR 2007. Extended summaries: National Seminar on Changing Vegetable Oils Scenario: Issue and Challenges Before India, Indian Society of Oilseeds Research, Hyderabad, India, pp 50–51

    Google Scholar 

  • Pratap A, Gupta SK, Vikas (2007) Advances in doubled haploid technology of oilseed rape. Ind J Crop Sci 2:267–271

    Google Scholar 

  • Pratap A, Gupta SK, Sharma M (2008) Genetic amelioration of crop brassicas through intergeneric hybridization using Diplotaxis. National Seminar on Physiological and Biotechnological Approaches to Improve Plant Productivity, March 15–17, Center for Plant Biotechnology, DST, Haryana, Hisar, India, pp 85–86

    Google Scholar 

  • Quazi MH (1988) Interspecific hybrids between B. napus and B. oleracea developedby embryo culture. Theor Appl Genet 75:309–318

    Google Scholar 

  • Radke SE, Turner JC, Facciotti D (1992) Transformation and regeneration of Brassica rapa using Agrobacterium tumefaciens. Plant Cell Rep 11:499–505

    Google Scholar 

  • Rai B (1976) Considerations in the genetic improvement of oil quality in rapeseed. Oilseed J 6:13–15

    Google Scholar 

  • Rai B (1979) Heterosis breeding. Agro-Biological Publications, AzadNagar, New Delhi, p 183

    Google Scholar 

  • Rai B (1982) Breeding strategy for developing high yielding varieties of toria(Brassica campestris var. toria). In: Research and development strategies for oilseeds production in India. ICAR, New Delhi, pp 131–135

    Google Scholar 

  • Rai B (1983a) Genetic improvement of seed yield and disease resistance in rapeseed and mustard oil crops. Oil Crops J 13:6–13

    Google Scholar 

  • Rai B (1983b) Advances in rapeseed and mustard breeding research. Ind Farm 37:16–17

    Google Scholar 

  • Rai B (1987) PT 303 the first national variety of toria. Ind Farm 37:16–15

    Google Scholar 

  • Rai B, Kumar A (1978) Rapeseed and mustard production programme. Ind Farm 28:27–30

    Google Scholar 

  • Rai B, Sehgal VK (1975) Field resistance of Brassica germplasm to mustard aphids (Lipaphis Erysimi kalt). Sci and Cult 41:444–445

    Google Scholar 

  • Rai B, Singh A (1976) Commercial seed production in rapeseed. Ind Farm 26:15–17

    Google Scholar 

  • Rai B, Singh D (1993) A note on the potential sources of dwarfing genes in Indian rapeseed (Brassica campestris). Ind J Genet 53:153–156

    Google Scholar 

  • Rai B, Kolte SJ, Tiwari AN (1976) Evaluation of oleiferous Brassicagermplasm for resistance to Alternaria leaf blight. Ind J Mycol Pathol 6:76–77

    Google Scholar 

  • Rai L, Rai B, Sanaghmitra M, Rao BP (1987) Control of aphids in mustard and safflower crops. Ind Farm 37:16–19

    Google Scholar 

  • Rai B, Gupta SK, Pratap A (2007) Breeding methods. In: Gupta SK (ed) Advances in botanical research-rapeseed breeding, pp 21–48, vol 45. Academic Press/Elsevier, San Diego, CA, p 554

    Google Scholar 

  • Rajan SS (1955) The effectiveness of mass-pedigree system of selection improvement of seed setting in autotetraploid toria. Ind J Genet 15:47–49

    Google Scholar 

  • Rakow G (1973) Selektion auf linol und Linolen sauregehalt in rapssamen nach mutagener behind lung. Z. Pflanzenzuchtg 69:62–82

    Google Scholar 

  • Rakow G (1995) Developments in the breeding of oil in other Brassica species. In: Proceedings 9th International rapeseed congress. Cambridge, UK, vol 2, 401–406

    Google Scholar 

  • Rakow G, Raney JP (2003) Present status and future perspectives of breeding for seed quality in Brassica oilseed crops. In: Proceedings 11th International Rapeseed Congress. The Royal Veterinary and Agricultural University, Copenhagen, Denmark, 6–10th July, pp 181–185

    Google Scholar 

  • Rakow G, Woods DL (1987) Outcrossing in rape and mustard underSaskatchewan prairie conditions. Can J Plant Sci 67:147–151

    Google Scholar 

  • Ramanujam S, Rai B (1963) Analysis of yield components in yellow sarson. Ind J Genet 23:312–319

    Google Scholar 

  • Ramanujam S, Srinivasachar D (1943) Cytogenetic investigations in genusBrassica and the artificial synthesis of Brassica juncea. Ind J Genet 3:73–88

    Google Scholar 

  • Rambhajan Chauhan YS, Kumar K (1991) Natural cross-pollination in Indian mustard. Cruciferae Newslett 14/15:24–25

    Google Scholar 

  • Raney JP, Olson TV, Rakow G, Ripley VL (2003a) Brassica juncea with a canola fatty acid composition from an interspecific cross with Brassica napus. In: Proceedings 11th International Rapeseed Congress.The Royal Veterinary and Agricultural University Copenhagen, Denmark, 6–10 July, pp 281–283

    Google Scholar 

  • Raney JP, Olson TV, Rakow G, Ripley VL (2003b) Selection of near zero aliphatic glucosinolate Brassica juncea from an interspecific cross with B. napus. In: Proceedings 11th International Rapeseed Congress. The Royal Veterinary and Agricultural University, Copenhagen, Denmark, 6–10 July, pp 284–286

    Google Scholar 

  • Rao MVB (1990) Widening variability in cultivated digenomic Brassica through interspecific hybridization. Ph.D Thesis, IARI, New Delhi, India

    Google Scholar 

  • Raut RN, Kaul T (1982) Synthesis of new genotypes of Brassica napussuitable for cultivation in India. Curr Sci 51:838–839

    Google Scholar 

  • Raut RN, Prakash S (1985) Synthetic brassicas: new oilseeds for greaterproduction. In: Genetic manipulations for crop improvement. Oxford and IBH, New Delhi, p 326

    Google Scholar 

  • Reiner H, Holzner W, Ebermann R (1995) The development of turnip typeand oilseed type Brassica rapa crops from the wild type in Europe-Anoverview of the botanical, historical and linguistic facts: Rapeseed Todayand Tomorrow, Ninth International Rapeseed Congress, Cambridge, UK, July 4–7, vol 4, pp 1066–1069

    Google Scholar 

  • Robbelen G, Nitsch A (1974) Genetische und physiologische undersuchungenand polyen-fettsaure-mutanten von Raps. I auslese und beschreibung neuermutanten. Z Pflansenzuchtg 75:93–105

    Google Scholar 

  • Robellen G (1960) Beitrage zur analyse des Brassica-Genoms. Chromosoma 11:205–228

    Google Scholar 

  • Roy NN (1984) Interspefific transfer of Brassica juncea type high blackleg resistance to Brassica napus. Euphytica 33:295–303

    Google Scholar 

  • Roy NN, Tarr AW (1985) IXLIN- an interspecific source for high linoleicacid content in rapeseed. Plant Breed 95:201–209

    CAS  Google Scholar 

  • Roy NN, Tarr AW (1986) Development of new zero linolenic acid (18: 3)lines of rapeseed (Brassica napus L). Z Pflanzenzuchtg 96:218–233

    CAS  Google Scholar 

  • Sacristan MD, Gerdemann M (1986) DiVerent behavior of Brassica junceaand B. carinata as source of interspecific transfer to B. napus. Plant Breed 97:304–314

    Google Scholar 

  • Sang JP, Truscott RJW (1984) Liquid chromatographic determination ofglucosinolates in rapeseed as desulphoglucosinolates. J Assoc Off Anal Chem 67:829–833

    CAS  Google Scholar 

  • Scheffler JA, Dale PJ (1994) Opportunities for gene tarsnfer from transgeneic oilseed rape (Brassica napus) to related species. Transgen Res 3:263–278

    CAS  Google Scholar 

  • Schiemann E (1932) Entstehung der kulturpflan zen Handlab. Vererbwis Lfg 15

    Google Scholar 

  • Schnepf E, Crickmore N, VanRie J, Lereclus D, Baum J, Feitelson J, Ziegler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    PubMed  CAS  Google Scholar 

  • Schuler TJ, Hutcheson DS, Downey RK (1992) Heterosis in intervarietal hybrids of summer turnip rape in western Canada. Can J Plant Sci 72:127–136

    Google Scholar 

  • Schuster W, Michael J (1976) Untersuchungen uber Inzuchtdepressionen und Heterosis effekte bei Raps (Brassica napus oleifera). Zeitschrift fiir Pflanzenzuchtung 77:56–66

    Google Scholar 

  • Sernyk JL, Stefansson BR (1983) Heterosis in summer rape (B. napus). Can J Plant Sci 63:407–413

    Google Scholar 

  • Sernyk JL, Stefansson BR (1983) Heterosis in summer rape (Brassica napus L.)

    Google Scholar 

  • Shabana R, Shrief SA, Ibrahim AF, Gisler G (1990) Correlation and pathanalysis for new released double zero spring rapeseed cultivars grown undercompetitive systems. J Agronomica Crop Sci 165:138–143

    Google Scholar 

  • Shahidi F (1990) Rapeseed and canola: global production and distribution. In: Shahidi F (ed) Canola and rapeseed: production, chemistry, nutrition and processingtechnology. Van Norstrand Reinhold, New York, p 13

    Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881

    PubMed  CAS  Google Scholar 

  • Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific over expression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401–412

    PubMed  CAS  Google Scholar 

  • Shi SW, Wu JS, Zhou YM, Liu HL (2002) Diploidization techniques of haploids from in vitro culture microspores of rapeseed (Brassica napus L.). Chinese J Oil Crop 24:1–5

    Google Scholar 

  • Shiga T (1970) Rape breeding by interspecific crossing between Brassica napus andBrassica campestris in Japan. Jpn Agri Res Q 5:5–10

    Google Scholar 

  • Sikka SM, Rajan SS (1957) Breeding better Brassicas. Ind Oilseeds J I:73–81

    Google Scholar 

  • Singh D (1958) Rape and mustard, Indian Central Oilseeds Committee, Hyderabad, India, p 105

    Google Scholar 

  • Singh SP (1973) Heterosis and combining ability estimates in Indian mustard, Brassica juncea (L.) Czern and Coss. Crop Sci 13:497–499

    Google Scholar 

  • Singh J (1986) Genetic analysis of yield and its component characters in Brassicanapus. Ph. D. Thesis, Meerut University, Meerut (UP), India

    Google Scholar 

  • Singh R, Rana RS (1994) Genetic resources programme on oilseed Brassica:Introduction and evaluation at NBPGR during 193–94. Paper Presented at the First All India apeseed-Mustard Research Workers Group Meeting, Gwalior, 19–22 Aug

    Google Scholar 

  • Singh H, Singh D (1987) A note on the transfer of resistance to white rust fromEthiopian mustard to Indian mustard. Cruciferae Newslett 12:95

    Google Scholar 

  • Singh D, Singh H (1988) Inheritance of white rust resistance in interspecificcrosses of B. jumcea _ B. carinata. Crops Res 1:189–193

    Google Scholar 

  • Spasibionek S, Krzymanski J, Bartkowiak-Broda I (2003) Mutants of Brassicanapus with changed fatty acid composition. In: Proceedings of 11th International Rapeseed Congress. The Royal Veterinaryand Agricultural University, Copenhagen, Denmark, 6–10th July, vol 1, pp 221–224

    Google Scholar 

  • Spinks EA, Sones K, Fenwick GR (1984) The quantitative analysis ofglucosinolates in cruciferous vegetables, oilseeds and forage crops usinghigh performance liquid chromatography. Fette Seifen Anstrichm 86:228–231

    CAS  Google Scholar 

  • Srivastava K, Rai B (1993) Expression of heterosis for yield and its attributes inrapeseed. Ind J Agric Sci 63:243–245

    Google Scholar 

  • Stefansson RR, Hougen FW, Downey RK (1961) Note on the isolation ofrape plants with seed oil free from erucic acid. Can J Plant Sci 41:218–219

    Google Scholar 

  • Stewart CN, Adang MJ, All JN, Raymer PL, Ramachandran S, Parrott WA (1996) Insect control and dosage effects in transgenic canola containing a synthetic Bacillus thuringiensis cry1Ac gene. Plant Physiol 112:115–120

    CAS  Google Scholar 

  • Stoutjesdijk PA, Hurlestone C, Singh SP, Green AG (2000) High oleic-acid Australian Brassica napus and B. juncea varieties produced by co-suppression of endogenous delta 12-desaturases. Biochem Soc Trans 28:938–940

    PubMed  CAS  Google Scholar 

  • Stringam GR, Ripley VL, Love HK, Mitchell A (2003) Transgenicherbicide tolerant canola. The Canadian experience. Crop Sci 43:1590–1593

    CAS  Google Scholar 

  • Swanson EB, Coumans MP, Brown GL, Patel JD, Beversdorf WD (1988) The characterization of herbicide tolerant plants in Brassica napus L. after in vitro selection of microspores and protoplasts. Plant Cell Rep 7:83–87

    CAS  Google Scholar 

  • Swanson EB, Herrgesell MJ, Arnoldo M, Sippell DW, Wong RSC (1989) Microspore mutagenesis and selection: canola plants with field tolerance to the imidazolinones. Theor Appl Genet 78:525–530

    CAS  Google Scholar 

  • Szarejko I, Forster BP (2007) Doubled haploidy and induced mutation. Euphytica 158:359–370

    Google Scholar 

  • Tewari JP (1991) Resistance to Alternaria brassicae in crucifers. 10 BC/WPRS Bull. 14:154–161

    Google Scholar 

  • The Biology of Brassica rapa (1999) Regulatory Directive Govt. of Canada, p 20(available at:http://maltawildplants.com?CRUC/Docs/BRSRA/Brassicarapa.pdf)

  • Thompson KF (1964) Triple cross hybrid kale. Euphytica 13:173–177

    Google Scholar 

  • Toriyama K, Hinata K, Kameye T (1987) Production of somatic hybridplants rassico-moricandia through protoplast fusion between Moricandiaarvensis and Brassica oleracea. Plant Sci 48:123–128

    Google Scholar 

  • Tyagi DVS, Rai B, Verma RB (1983) A note on the bunchy dwarf mutantin toria. Ind J Genet 43:374–377

    Google Scholar 

  • Uchimiya H, Wildman SG (1978) Evaluation of fraction I protein in relationto origin of amphidiploid Brassica species and other members of cruciferae. J Hered 69:299–303

    CAS  Google Scholar 

  • UN (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and particular mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Verma VD, Rai B (1980a) Note on induced mutagenesis for spotting outusable sources of resistance to Alternaria leaf spot in Indian mustard. Ind J Agric Sci 50:278–280

    Google Scholar 

  • Verma VD, Rai B (1980b) Mutation in seed coat colour in Indian mustard. Ind J Agric Sci 50:545–548

    Google Scholar 

  • Wang M, Farnham MW, Nannes JSP (1999) Ploidy of broccoli regenerated from microspore culture versus anther culture. Plant Breed 118:249–252

    Google Scholar 

  • Wang HZ, Liu GH, Zheng YB, Wang XF, Yang Q (2002) Breeding of Brassica napus cultivar Zhongshuang No. 9 with resistance to Sclerotinia sclerotiorum. Chinese J Oil Crop Sci 24:71–73

    Google Scholar 

  • Weiss ED (1983) Rapeseed. In: Weiss EA (ed) Oilseed crops, Longman, London, pp 161–215

    Google Scholar 

  • Witmack L (1904) U ¨ ber die in Pompej gefundenen Pflanzenreste. Englers Bot. Jahrb. Bd 33

    Google Scholar 

  • Xu L, Najeeb U, Tang GX, Gu HH, Zhang GQ, He Y, Zhou WJ (2007) Haploid and doubled haploid technology. In: Gupta SK (ed) Advances in botanical research-rapeseed breeding, vol 45. Academic Press/Elsevier Ltd., San Diego, CA, pp 181–216

    Google Scholar 

  • Yadava TP, Singh H, Gupta VP, Rana RK (1974) Heterosis andcombining ability in raya for yield and its components. Ind J Genet 34A:648–695

    Google Scholar 

  • Yadava TP, Singh H, Gupta VP, Rana RK (1974b) Heterosis and combining ability in raya for yield and its component. Ind J Genet 34A:648–695

    Google Scholar 

  • Yan Z (1990) Overview of rapeseed production and research in China. In: Proceedings of International Canola Conference, April. Potashand Phosphate Institute, Atlanta, GA, pp 29–35

    Google Scholar 

  • Yongming Z, Houlilin Z (1991) Selective strategies on the breeding forquality in Brassica napus. Cruciferae Newslett 14(15):58–59

    Google Scholar 

  • Yu FQ, Liu HL (1995) Effects of donor materials and media on microspore embryoid yield of Brassica napus. J Huazhong Agric Uni 14:327–332

    Google Scholar 

  • Zhang F, Takahata Y (1999) Microspore mutagenesis and in vitro selection for resistance to soft rot disease in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Breed Sci 49:161–166

    Google Scholar 

  • Zhang GQ, Zhou WJ, Gu HH, Song WJ, Momoh EJJ (2003) Plant regeneration from the hybridization of Brassica juncea and B. napus through embryo culture. J Agron Crop Sci 189:347–350

    Google Scholar 

  • Zhang GQ, Zhang DQ, Tang GX, He Y, Zhou WJ (2006) Plant development from microspore-derived embryos in oilseed rape as affected by chilling, desiccation and cotyledon excision. Biologia Plantarum 50:180–186

    Google Scholar 

  • Zhou WJ, Hagberg P, Tang GX (2002a) Increasing embryogenesis and doubling efficiency by immediate colchicine treatment of isolated microspores in spring Brassica napus. Euphytica 128:27–34

    CAS  Google Scholar 

  • Zhou WJ, Tang GX, Hagberg P (2002b) Efficient production of doubled haploid plants by immediate colchicine treatment of isolated microspores in winter Brassica napus. Plant Growth Reg 37:185–192

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gupta, S.K. (2012). Brassicas. In: Gupta, S. (eds) Technological Innovations in Major World Oil Crops, Volume 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0356-2_3

Download citation

Publish with us

Policies and ethics